Zinc finger protein 516

Zinc finger protein 516 is a protein that in humans is encoded by the ZNF516 gene.[5]

ZNF516
Identifiers
AliasesZNF516, HsT287, zinc finger protein 516
External IDsOMIM: 615114 MGI: 2443957 HomoloGene: 37122 GeneCards: ZNF516
Gene location (Human)
Chr.Chromosome 18 (human)[1]
Band18q23Start76,357,682 bp[1]
End76,495,242 bp[1]
Orthologs
SpeciesHumanMouse
Entrez

9658

329003

Ensembl

ENSG00000101493

ENSMUSG00000058881

UniProt

Q92618

Q7TSH3

RefSeq (mRNA)

NM_014643

NM_001177464
NM_183033

RefSeq (protein)

NP_055458

NP_001170935
NP_898854

Location (UCSC)Chr 18: 76.36 – 76.5 MbChr 18: 82.91 – 83.01 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

Function

Zinc-finger proteins bind nucleic acids and play important roles in various cellular functions, including cell proliferation, differentiation, and apoptosis. This gene encodes a zinc-finger protein, and belongs to the Krüppel C2H2-type zinc-finger protein family. It may be involved in transcriptional regulation.

References

  1. GRCh38: Ensembl release 89: ENSG00000101493 - Ensembl, May 2017
  2. GRCm38: Ensembl release 89: ENSMUSG00000058881 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. "Entrez Gene: Zinc finger protein 516".

Further reading

  • Shaffer JR, Feingold E, Wang X, Lee M, Tcuenco K, Weeks DE, Weyant RJ, Crout R, McNeil DW, Marazita ML (January 2013). "GWAS of dental caries patterns in the permanent dentition". Journal of Dental Research. 92 (1): 38–44. doi:10.1177/0022034512463579. PMC 3521449. PMID 23064961.
  • Shi Y, Sawada J, Sui G, Affar el B, Whetstine JR, Lan F, Ogawa H, Luke MP, Nakatani Y, Shi Y (April 2003). "Coordinated histone modifications mediated by a CtBP co-repressor complex". Nature. 422 (6933): 735–8. doi:10.1038/nature01550. PMID 12700765.
  • Nagase T, Seki N, Ishikawa K, Ohira M, Kawarabayasi Y, Ohara O, Tanaka A, Kotani H, Miyajima N, Nomura N (October 1996). "Prediction of the coding sequences of unidentified human genes. VI. The coding sequences of 80 new genes (KIAA0201-KIAA0280) deduced by analysis of cDNA clones from cell line KG-1 and brain". DNA Research. 3 (5): 321–9, 341–54. doi:10.1093/dnares/3.5.321. PMID 9039502.
  • Lee MG, Wynder C, Cooch N, Shiekhattar R (September 2005). "An essential role for CoREST in nucleosomal histone 3 lysine 4 demethylation". Nature. 437 (7057): 432–5. doi:10.1038/nature04021. PMID 16079794.
  • Yashin AI, Wu D, Arbeev KG, Ukraintseva SV (September 2010). "Joint influence of small-effect genetic variants on human longevity". Aging. 2 (9): 612–20. doi:10.18632/aging.100191. PMC 2984609. PMID 20834067.
  • O'Brien RP, Phelan PJ, Conroy J, O'Kelly P, Green A, Keogan M, O'Neill D, Jennings S, Traynor C, Casey J, McCormack M, Conroy R, Chubb A, Ennis S, Shields DC, Cavalleri GL, Conlon PJ (2013). "A genome-wide association study of recipient genotype and medium-term kidney allograft function". Clinical Transplantation. 27 (3): 379–87. doi:10.1111/ctr.12093. PMID 23432519.

This article incorporates text from the United States National Library of Medicine, which is in the public domain.


This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.