Szegő limit theorems

In mathematical analysis, the Szegő limit theorems describe the asymptotic behaviour of the determinants of large Toeplitz matrices.[1][2][3] They were first proved by Gábor Szegő.

Notation

Let φ : TC be a complex function ("symbol") on the unit circle. Consider the n×n Toeplitz matrices Tn(φ), defined by

where

are the Fourier coefficients of φ.

First Szegő theorem

The first Szegő theorem[1][4] states that, if φ > 0 and φ  L1(T), then

 

 

 

 

(1)

The right-hand side of (1) is the geometric mean of φ (well-defined by the arithmetic-geometric mean inequality).

Second Szegő theorem

Denote the right-hand side of (1) by G. The second (or strong) Szegő theorem[1][5] asserts that if, in addition, the derivative of φ is Hölder continuous of order α > 0, then

References

  1. Böttcher, Albrecht; Silbermann, Bernd (1990). "Toeplitz determinants". Analysis of Toeplitz operators. Berlin: Springer-Verlag. p. 525. ISBN 3-540-52147-X. MR 1071374.
  2. Ehrhardt, T.; Silbermann, B. (2001) [1994], "Szegö_limit_theorems", in Hazewinkel, Michiel (ed.), Encyclopedia of Mathematics, Springer Science+Business Media B.V. / Kluwer Academic Publishers, ISBN 978-1-55608-010-4
  3. Simon, Barry (2010). Szegő's Theorem and Its Descendants: Spectral Theory for L2 Perturbations of Orthogonal Polynomials. Princeton: Princeton University Press. ISBN 978-0-691-14704-8. MR 1071374.
  4. Szegő, G. (1915). "Ein Grenzwertsatz über die Toeplitzschen Determinanten einer reellen positiven Funktion" (PDF). Math. Ann. 76 (4): 490–503. doi:10.1007/BF01458220.
  5. Szegő, G. (1952). "On certain Hermitian forms associated with the Fourier series of a positive function". Comm. Sém. Math. Univ. Lund [Medd. Lunds Univ. Mat. Sem.]: 228–238. MR 0051961.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.