Radeon X700 series

The Radeon X700 (RV410) series replaced the X600 in September 2004. X700 Pro is clocked at 425 MHz core, and produced on a 0.11 micrometre process. RV410 used a layout consisting of 8 pixel pipelines connected to 4 ROPs (similar to GeForce 6600) while maintaining the 6 vertex shaders of X800. The 110 nm process was a cost-cutting process, designed not for high clock speeds but for reducing die size while maintaining high yields. An X700 XT was planned for production, and reviewed by various hardware web sites, but was never released. It was believed that X700 XT set too high of a clock ceiling for ATI to profitably produce. X700 XT was also not adequately competitive with nVidia's impressive GeForce 6600GT. ATI would go on produce a card in the X800 series to compete instead.

ATI Radeon X700 series
Release date2004-2005
ArchitectureRadeon R400
Transistors120M 110nm (RV410)
Cards
Entry-levelX700 SE, X700 LE, X700
Mid-rangeX700 PRO
High-endX740 XL
API support
Direct3DDirect3D 9.0b
Shader Model 2.0b
OpenGLOpenGL 2.0
History
PredecessorRadeon X300-X600 series
SuccessorRadeon X800 series

Radeon Feature Matrix

The following table shows features of AMD's GPUs (see also: List of AMD graphics processing units).

Name of GPU series Wonder Mach 3D Rage Rage Pro Rage R100 R200 R300 R400 R500 R600 RV670 R700 Evergreen Northern
Islands
Southern
Islands
Sea
Islands
Volcanic
Islands
Arctic
Islands/Polaris
Vega Navi
Released 1986 1991 1996 1997 1998 Apr 2000 Aug 2001 Sep 2002 May 2004 Oct 2005 May 2007 Nov 2007 Jun 2008 Sep 2009 Oct 2010 Jan 2012 Sep 2013 Jun 2015 Jun 2016 Jun 2017 Jul 2019
Marketing Name Wonder Mach 3D Rage Rage Pro Rage Radeon 7000 Radeon 8000 Radeon 9000 Radeon X700/X800 Radeon X1000 Radeon HD 1000/2000 Radeon HD 3000 Radeon HD 4000 Radeon HD 5000 Radeon HD 6000 Radeon HD 7000 Radeon Rx 200 Radeon Rx 300 Radeon RX 400/500 Radeon RX Vega/Radeon VII(7nm) Radeon RX 5000
AMD support
Kind 2D 3D
Instruction set Not publicly known TeraScale instruction set GCN instruction set RDNA instruction set
Microarchitecture TeraScale 1 TeraScale 2 (VLIW5) TeraScale 3 (VLIW4) GCN 1st gen GCN 2nd gen GCN 3rd gen GCN 4th gen GCN 5th gen RDNA
Type Fixed pipeline[lower-alpha 1] Programmable pixel & vertex pipelines Unified shader model
Direct3D N/A 5.0 6.0 7.0 8.1 9.0
11 (9_2)
9.0b
11 (9_2)
9.0c
11 (9_3)
10.0
11 (10_0)
10.1
11 (10_1)
11 (11_0) 11 (11_1)
12 (11_1)
11 (12_0)
12 (12_0)
11 (12_1)
12 (12_1)
Shader model N/A 1.4 2.0+ 2.0b 3.0 4.0 4.1 5.0 5.1 5.1
6.3
6.4
OpenGL N/A 1.1 1.2 1.3 2.0[lower-alpha 2] 3.3 4.5 (on Linux + Mesa 3D: 4.2 with FP64 HW support, 3.3 without)[1][2][3][lower-alpha 3] 4.6 (on Linux: 4.6 (Mesa 20.0))
Vulkan N/A 1.0
(Win 7+ or Mesa 17+)
1.2 (Adrenalin 20.1, Linux Mesa 20.0)
OpenCL N/A Close to Metal 1.1 1.2 2.0 (Adrenalin driver on Win7+)
(1.2 on Linux, 2.1 with AMD ROCm)
?
HSA N/A ?
Video decoding ASIC N/A Avivo/UVD UVD+ UVD 2 UVD 2.2 UVD 3 UVD 4 UVD 4.2 UVD 5.0 or 6.0 UVD 6.3 UVD 7[4][lower-alpha 4] VCN 2.0[4][lower-alpha 4]
Video encoding ASIC N/A VCE 1.0 VCE 2.0 VCE 3.0 or 3.1 VCE 3.4 VCE 4.0[4][lower-alpha 4]
Power saving ? PowerPlay PowerTune PowerTune & ZeroCore Power ?
TrueAudio N/A Via dedicated DSP Via shaders
FreeSync N/A 1
2
HDCP[lower-alpha 5] ? 1.4 1.4
2.2
1.4
2.2
2.3
PlayReady[lower-alpha 5] N/A 3.0 3.0
Supported displays[lower-alpha 6] 1–2 2 2–6 ?
Max. resolution ? 2–6 ×
2560×1600
2–6 ×
4096×2160 @ 60 Hz
2–6 ×
5120×2880 @ 60 Hz
3 ×
7680×4320 @ 60 Hz[5]
?
/drm/radeon[lower-alpha 7] N/A
/drm/amdgpu[lower-alpha 7] N/A Experimental[6]
  1. The Radeon 100 Series has programmable pixel shaders, but do not fully comply with DirectX 8 or Pixel Shader 1.0. See article on R100's pixel shaders.
  2. These series do not fully comply with OpenGL 2+ as the hardware does not support all types of non-power of two (NPOT) textures.
  3. OpenGL 4+ compliance requires supporting FP64 shaders and these are emulated on some TeraScale chips using 32-bit hardware.
  4. The UVD and VCE were replaced by the Video Core Next (VCN) ASIC in the Raven Ridge APU implementation of Vega.
  5. To play protected video content, it also requires card, operating system, driver, and application support. A compatible HDCP display is also needed for this. HDCP is mandatory for the output of certain audio formats, placing additional constraints on the multimedia setup.
  6. More displays may be supported with native DisplayPort connections, or splitting the maximum resolution between multiple monitors with active converters.
  7. DRM (Direct Rendering Manager) is a component of the Linux kernel. Support in this table refers to the most current version.

Radeon R400 series

AGP (X7xx, X8xx)

Model Launch Code name Fab (nm) Memory (MiB) Core clock (MHz) Memory clock (MHz) Config core1 Fillrate Memory
MOperations/s MPixels/s MTexels/s MVertices/s Bandwidth (GB/s) Bus type Bus width (bit)
Radeon X700 Sept. 2005 RV410 (alto) 110 128, 256 400 700 8:6:8:8 3200 3200 3200 600 11.2 DDR 128
Radeon X700 Pro March 1, 2005 RV410 (alto) 110 128, 256 425 864 8:6:8:8 3400 3400 3400 637.5 13.824 GDDR3 128

PCI-E (X7xx)

Model Launch Code name Fab (nm) Memory (MiB) Core clock (MHz) Memory clock (MHz) Config core1 Fillrate Memory
MOperations/s MPixels/s MTexels/s MVertices/s Bandwidth (GB/s) Bus type Bus width (bit)
Radeon X700 SE Apr. 1, 2005 RV410 (alto) 110 128 400 400
500
4:6:4:8 1600 3200 1600 600 3.2 DDR 64
Radeon X700 LE Dec. 21, 2004 RV410 (alto) 110 128 400 500 8:6:8:8 3200 3200 3200 600 4 DDR 64
Radeon X700 Sept. 2005 RV410 (alto) 110 128, 256 400 500
700
8:6:8:8 3200 3200 3200 600 8
11.2
DDR 128
Radeon X700 Pro Dec. 21, 2004 RV410 (alto) 110 128, 256 425 864 8:6:8:8 3400 3400 3400 637.5 13.824 GDDR3 128
Radeon X700 XT Never Released RV410 (alto) 110 128, 256 475 1050 8:6:8:8 3800 3800 3800 712.5 16.8 GDDR3 128

See also

  1. "AMD Radeon Software Crimson Edition Beta". AMD. Retrieved 2018-04-20.
  2. "Mesamatrix". mesamatrix.net. Retrieved 2018-04-22.
  3. "RadeonFeature". X.Org Foundation. Retrieved 2018-04-20.
  4. Killian, Zak (22 March 2017). "AMD publishes patches for Vega support on Linux". Tech Report. Retrieved 23 March 2017.
  5. "Radeon's next-generation Vega architecture" (PDF). Radeon Technologies Group (AMD). Archived from the original (PDF) on 2018-09-06. Retrieved 13 June 2017.
  6. Larabel, Michael (7 December 2016). "The Best Features of the Linux 4.9 Kernel". Phoronix. Retrieved 7 December 2016.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.