Radeon RX Vega series

The Radeon RX Vega series is a series of graphics processors developed by AMD. These GPUs use the Graphics Core Next (GCN) 5th generation architecture, codenamed Vega, and are manufactured on 14 nm FinFET technology, developed by Samsung Electronics and licensed to GlobalFoundries.[7] The series consists of desktop graphics cards and APUs aimed at desktops, mobile devices, and embedded applications.

AMD Radeon RX Vega series
Release date14 August 2017 (2017-08-14)
Codename
  • Vega
ArchitectureGCN 5th gen
Fabrication processSamsung/GloFo 14 nm (FinFET)
TSMC 7 nm (FinFET)
Cards
Entry-levelVega 3
Vega 6
Vega 8
RX Vega 10
RX Vega 11
High-endRX Vega 56
RX Vega 64
RX Vega 64 Liquid
EnthusiastRadeon VII
API support
Direct3D
OpenCLOpenCL 2.0[1]
OpenGLOpenGL 4.6[1][2][3]
Vulkan
History
PredecessorRadeon RX 500 series
SuccessorRadeon RX 5000 series

The lineup was released on 14 August 2017. It included the RX Vega 56 and the RX Vega 64, priced at $399 and $499 respectively.[8] These were followed by two mobile APUs, the Ryzen 2500U and Ryzen 2700U, in October 2017.[9] February 2018 saw the release of two desktop APUs, the Ryzen 3 2200G and the Ryzen 5 2400G, and the Ryzen Embedded V1000 line of APUs.[10][11] In September 2018 AMD announced several Vega APUs in their Athlon line of products.[12] Later in January 2019, the Radeon VII was announced based on the 7nm FinFET node manufactured by TSMC.[13][14]

History

The Vega microarchitecture is AMD's high-end graphics cards line,[15] and is the successor to the R9 300 series enthusiast Fury products. Partial specifications of the architecture and Vega 10 GPU were announced with the Radeon Instinct MI25 in December 2016.[16] AMD later teased details of the Vega architecture.

Announcement

Vega was originally announced at AMD's CES 2017 presentation on January 5, 2017,[17] alongside the Zen line of CPUs.[18]

New features

Vega targets increased instructions per clock, higher clock speeds, and support for HBM2.[19][20][21]

AMD's Vega features new memory hierarchy with high-bandwidth cache and its controller

Support for HBM2 featuring double the bandwidth-per-pin over previous generation HBM. HBM2 allows for higher capacities with less than half the footprint of GDDR5 memory. Vega architecture is optimized for streaming very large datasets and can work with a variety of memory types with up to 512TB of virtual address space.

Primitive shader for improved geometry processing. Replaces vertex and geometry shaders in geometry processing pipelines with a more programmable single stage. The primitive shader stage is more efficient, introduces intelligent load balancing technologies and higher throughput.[22]

NCU: Next Compute Unit a Next-generation compute engine. The Vega GPU introduces the Next-Gen Compute Unit. Versatile architecture featuring flexible compute units that can natively process 8-bit, 16-bit, 32-bit or 64-bit operations in each clock cycle. And run at higher frequencies. Vega brings support for Rapid Packed Math, processing two half-precision (16-bit) in the same time as a single 32-bit floating-point operation. Up to 128 32-bit, 256 16-bit or 512 8-bit ops per clock are possible with the Vega architecture.[22]

Draw Stream Binning Rasterizer designed for higher performance and power efficiency. It allows for "fetch once, shade once" of pixels through the use of a smart on-chip bin cache and early culling of pixels invisible in a final scene.

Vega cards can consume comparatively less power along with same or even better performance when the card is undervolted. An offset off 0.25V is proving really cool and efficient.

Vega bumps Direct3D feature level support from 12_0 to 12_1.

Vega's rasteriser brings hardware-acceleration support for Rasterizer Ordered Views and Conservative Rasterisation Tier 3.[23]

Products

RX Vega branded discrete graphics

Model
(codename)
Release Date
& Price
Architecture
& Fab
Transistors
& Die Size
Core Fillrate[lower-alpha 1][lower-alpha 2][lower-alpha 3] Processing power[lower-alpha 1][lower-alpha 4]
(GFLOPS)
Memory TBP Bus
interface
Config[lower-alpha 5] Clock[lower-alpha 1] (MHz) Texture
(GT/s)
Pixel
(GP/s)
Half Single Double Bus type
& width
Size
(GiB)
Clock
(MT/s)
Bandwidth
(GB/s)
Radeon RX Vega 56
(Vega10 XL)[24][25][26]
August 28, 2017
$399 USD
GCN 5th gen
Samsung/GloFo
14LPP[27][lower-alpha 6]
12.5×109
486 mm2
3584:224:64
56 CU
1156
1471
258.9
329.5
74.0
94.1
16572
21088
8286
10544
518
659
HBM2
2048-bit
8 1600 410 210 W PCIe 3.0
×16
Radeon RX Vega 64
(Vega10 XT)[24][26][29]
August 14, 2017
$499 USD
4096:256:64
64 CU
1247
1546
319.2
395.8
79.8
98.9
20431
25330
10215
12665
638
792
1890 483.8 295 W
Radeon RX Vega 64 Liquid
(Vega10 XT)[24][26][29]
August 14, 2017
$699 USD
1406
1677
359.9
429.3
90.0
107.3
23036
27476
11518
13738
720
859
345 W
  1. Boost values (if available) are stated below the base value in italic.
  2. Texture fillrate is calculated as the number of Texture Mapping Units multiplied by the base (or boost) core clock speed.
  3. Pixel fillrate is calculated as the number of Render Output Units multiplied by the base (or boost) core clock speed.
  4. Precision performance is calculated from the base (or boost) core clock speed based on a FMA operation.
  5. Unified Shaders : Texture Mapping Units : Render Output Units and Compute Units (CU)
  6. GlobalFoundries' 14 nm 14LPP FinFET process is second-sourced from Samsung Electronics.[28]

Radeon VII branded discrete graphics

Model
(codename)
Release Date
& Price
Architecture
& Fab
Transistors
& Die Size
Core Fillrate[lower-alpha 1][lower-alpha 2][lower-alpha 3] Processing power[lower-alpha 1][lower-alpha 4]
(GFLOPS)
Memory TBP Bus
interface
Config[lower-alpha 5] Clock[lower-alpha 1] (MHz) Texture
(GT/s)
Pixel
(GP/s)
Half Single Double Bus type
& width
Size
(GiB)
Clock
(MT/s)
Bandwidth
(GB/s)
Radeon VII
(Vega 20)
[30][31][32][33][34][35]
February 7, 2019
$699 USD
GCN 5th gen
TSMC 7FF
13.2×109
331 mm2
3840:240:64
60 CU
1400
1750
336
420
89.6
112
22,272
27,648
11,136
13,824
2,784
3,458.5
HBM2
4096-bit
16 2000 1028 300 W PCIe 3.0 x16
  1. Boost values (if available) are stated below the base value in italic.
  2. Texture fillrate is calculated as the number of Texture Mapping Units multiplied by the base (or boost) core clock speed.
  3. Pixel fillrate is calculated as the number of Render Output Units multiplied by the base (or boost) core clock speed.
  4. Precision performance is calculated from the base (or boost) core clock speed based on a FMA operation.
  5. Unified Shaders : Texture Mapping Units : Render Output Units and Compute Units (CU)

Workstation GPUs

Model
(Codename)
Launch Architecture
(Fab)
Transistors
Die Size
Core Fillrate[lower-alpha 1][lower-alpha 2][lower-alpha 3] Processing power[lower-alpha 1][lower-alpha 4]
(GFLOPS)
Memory TBP Bus interface Release Price (USD)
Config[lower-alpha 5] Clock[lower-alpha 1] (MHz) Texture (GT/s) Pixel (GP/s) Half Single Double Bus type
& width
Size (GiB) Clock (MT/s) Band-
width (GB/s)
Radeon Vega Frontier Edition
(Air Cooled)[36][37]
27 June 2017 GCN 5th gen
(14 nm)
12.5×109
484 mm2
4096:256:64 1382 409.6 102.4 22643 11321 707.6 HBM2
2048-bit
16 1890 483.8 300 W PCIe 3.0 ×16 $999
Radeon Vega Frontier Edition
(Liquid Cooled)[36][37]
1600 26214 13107 819.2 350 W $1499
  1. Boost values (if available) are stated below the base value in italic.
  2. Texture fillrate is calculated as the number of Texture Mapping Units multiplied by the base (or boost) core clock speed.
  3. Pixel fillrate is calculated as the number of Render Output Units multiplied by the base (or boost) core clock speed.
  4. Precision performance is calculated from the base (or boost) core clock speed based on a FMA operation.
  5. Unified Shaders : Texture Mapping Units : Render Output Units

Desktop APUs

Raven Ridge (2018)

Model Release Date
& Price
Process CPU GPU Memory
support
TDP
Cores
(threads)
Clock rate (GHz) Cache[lower-roman 1] Model Config[lower-roman 2] Clock Processing
power
(GFLOPS)[lower-roman 3]
Base Boost L1 L2 L3
Athlon 200GE[39][40] September 6, 2018
US $55
GloFo
14LP
2 (4) 3.2 N/A 64 KB inst.
32 KB data
per core
512 KB
per core
4 MB Vega 3 192:12:4
3 CU
1000 MHz 384 DDR4-2666
dual-channel
35 W
Athlon Pro 200GE[41][40] September 6, 2018
OEM
Athlon 220GE[42] December 21, 2018
US $65
3.4
Athlon 240GE[42] December 21, 2018
US $75
3.5
Athlon 3000G[43] November 19, 2019 1100 MHz 424.4
Ryzen 3 2200GE[44][45] April 19, 2018
OEM
4 (4) 3.2 3.6 Vega 8 512:32:16
8 CU
1100 MHz 1126 DDR4-2933
dual-channel
Ryzen 3 Pro 2200GE[46] May 10, 2018
OEM
Ryzen 3 2200G[47] February 12, 2018[48]
US $99
3.5 3.7 45–65 W
Ryzen 3 Pro 2200G[49] May 10, 2018
OEM
Ryzen 5 2400GE[50][45] April 19, 2018
OEM
4 (8) 3.2 3.8 RX Vega 11 704:44:16
11 CU[51]
1250 MHz 1760 35 W
Ryzen 5 Pro 2400GE[52] May 10, 2018
OEM
Ryzen 5 2400G[53] February 12, 2018[48][54]
US $169
3.6 3.9 45–65 W
Ryzen 5 Pro 2400G[55] May 10, 2018
OEM
  1. AMD defines 1 kilobyte (KB) as 1024 bytes, and 1 megabyte (MB) as 1024 kilobytes.[38]
  2. Unified Shaders : Texture Mapping Units : Render Output Units and Compute Units (CU)
  3. Single-precision performance is calculated from the base (or boost) core clock speed based on a FMA operation.

Picasso (2019)

Model Release Date
& Price
Fab CPU GPU Memory
support
TDP
Cores
(threads)
Clock rate (GHz) Cache[lower-alpha 1] Model Config[lower-alpha 2] Clock Processing
power
(GFLOPS)[lower-alpha 3]
Base Boost L1 L2 L3
Athlon Pro 300GE[57] September 30, 2019 12nm 2 (4) 3.4 N/A 64 KB inst.
32 KB data
per core
512 KB
per core
4 MB RX Vega 3 192:12:4
3 CU
1100 MHz 424.4 DDR4-2667
dual-channel
35 W
Ryzen 3 Pro 3200GE[57] September 30, 2019 4 (4) 3.3 3.8 RX Vega 8 512:32:16
8 CU
1200 MHz 1228.8 DDR4-2933
dual-channel
Ryzen 3 3200G[58] July 7, 2019
US $99
3.6 4.0 1250 MHz 1280 65 W
Ryzen 3 Pro 3200G[57] September 30, 2019
Ryzen 5 Pro 3400GE[57] 4 (8) 3.3 4.0 RX Vega 11 704:44:16
11 CU
1300 MHz 1830.4 35 W
Ryzen 5 3400G[58] July 7, 2019
US $149
3.7 4.2 1400 MHz 1971.2 65 W
Ryzen 5 Pro 3400G[57] September 30, 2019
  1. AMD defines 1 kilobyte (KB) as 1024 bytes, and 1 megabyte (MB) as 1024 kilobytes.[56]
  2. Unified Shaders : Texture Mapping Units : Render Output Units and Compute Units (CU)
  3. Single-precision performance is calculated from the base (or boost) core clock speed based on a FMA operation.

Renoir (2020)

Model Release Date
& Price
CPU GPU Memory
support
TDP
Cores
(threads)
Clock rate (GHz) Cache[lower-alpha 1] Model Config[lower-alpha 2] Clock Processing power
(GFLOPS)[lower-alpha 3]
Base Boost L1 L2 L3
  1. AMD defines 1 kilobyte (KB) as 1024 bytes, and 1 megabyte (MB) as 1024 kilobytes.[59]
  2. Unified Shaders : Texture Mapping Units : Render Output Units and Compute Units (CU)
  3. Single-precision performance is calculated from the base (or boost) core clock speed based on a FMA operation.

Mobile APUs

Raven Ridge (2017)

Model Release
date
CPU GPU Memory support TDP Part number
Cores
(threads)
Clock rate (GHz) Cache[lower-roman 1] Model Config[lower-roman 2] Clock Processing
power
(GFLOPS)[lower-roman 3]
Base Boost L1 L2 L3
Athlon Pro 200U[61] 2019 2 (4) 2.3 3.2 64 KB inst.
32 KB data
per core
512 KB
per core
4 MB Vega 3 192:12:4
3 CU [62]
1000 MHz 384 DDR4-2400
dual-channel
12–25 W YM200UC4T2OFB
Athlon 300U[63] January 6, 2019 2.4 3.3 YM300UC4T2OFG
Ryzen 3 2200U[64] January 8, 2018 2.5 3.4 1100 MHz 422.4 YM2200C4T2OFB
Ryzen 3 3200U[65] January 6, 2019 2.6 3.5 1200 MHz 460.8 YM3200C4T2OFG
Ryzen 3 2300U[66] January 8, 2018 4 (4) 2.0 3.4 Vega 6 384:24:8
6 CU [67]
1100 MHz 844.8 YM2300C4T4MFB
Ryzen 3 Pro 2300U[68] May 15, 2018 [69] YM230BC4T4MFB
Ryzen 5 2500U[70] October 26, 2017[70] 4 (8) 3.6 Vega 8 512:32:16
8 CU [71]
1126.4 YM2500C4T4MFB
Ryzen 5 Pro 2500U[72] May 15, 2018 [69] YM250BC4T4MFB
Ryzen 5 2600H[73] September 10, 2018[74] 3.2 DDR4-3200
dual-channel
35–54 W YM2600C3T4MFB
Ryzen 7 2700U[75] October 26, 2017[75] 2.2 3.8 Vega 10 640:40:16
10 CU [76]
1300 MHz 1664 DDR4-2400
dual-channel
12–25 W YM2700C4T4MFB
Ryzen 7 Pro 2700U[77] May 15, 2018 [69] YM270BC4T4MFB
Ryzen 7 2800H[73] September 10, 2018[74] 3.3 Vega 11 704:44:16
11 CU
1830.4 DDR4-3200
dual-channel
35–54 W YM2800C3T4MFB
  1. AMD in its technical documentation uses KB, which it defines as Kilobyte and as equal to 1024 bytes, and MB, which it defines as Megabyte and as equal to 1024 KB.[60]
  2. Unified Shaders : Texture Mapping Units : Render Output Units and Compute Units (CU)
  3. Single precision performance is calculated from the base (or boost) core clock speed based on a FMA operation.

Picasso (2019)

Model Release
date
Process CPU GPU Memory support TDP Part number
Cores
(threads)
Clock rate (GHz) Cache[lower-roman 1] Model Config[lower-roman 2] Clock Processing
power
(GFLOPS)[lower-roman 3]
Base Boost L1 L2 L3
Ryzen 3 3300U[79] January 6, 2019 GloFo
12LP (14LP+)
4 (4) 2.1 3.5 64 KB inst.
32 KB data
per core
512 KB
per core
4 MB Vega 6 384:24:8
6 CU[80]
1200 MHz 921.6 DDR4-2400
dual-channel
15 W YM3300C4T4MFG
Ryzen 3 PRO 3300U[81] YM330BC4T4MFG
Ryzen 5 3500U[82] 4 (8) 3.7 Vega 8 512:32:16
8 CU[83]
1228.8 YM3500C4T4MFG
Ryzen 5 PRO 3500U[84] YM350BC4T4MFG
Ryzen 5 3550H[85] 35 W YM3500C4T4MFG
Ryzen 5 3580U[86] October 2019 Vega 9 576:36:16
9 CU
1300 MHz 1497.6 15 W
Ryzen 7 3700U[87] January 6, 2019 2.3 4.0 Vega 10 640:40:16
10 CU[88]
1400 MHz 1792.0 YM3700C4T4MFG
Ryzen 7 PRO 3700U[89] YM370BC4T4MFG
Ryzen 7 3750H[90] 35 W YM3700C4T4MFG
Ryzen 7 3780U[91] October 2019 Vega 11 704:44:16
11 CU
1971.2 15 W
  1. AMD defines 1 kilobyte (KB) as 1024 bytes, and 1 megabyte (MB) as 1024 kilobytes.[78]
  2. Unified Shaders : Texture Mapping Units : Render Output Units and Compute Units (CU)
  3. Single precision performance is calculated from the base (or boost) core clock speed based on a FMA operation.

Dalí (2020)

Model Release
date
Fab CPU GPU Memory support TDP Part number
Cores/FPUs
(threads)
Clock rate (GHz) Cache[lower-alpha 1] Model Config[lower-alpha 2] Clock Processing
power
(GFLOPS)[lower-alpha 3]
Base Boost L1 L2 L3
AMD 3020e[93] January 6, 2020 14nm 2 (2) 1.2 2.6 64 KB inst.
32 KB data
per core
512 KB
per core
4 MB Radeon
(Vega)
???:?:?

3 CU

1000 MHz ??? DDR4-2400
dual-channel
6 W YM3020C7T2OFG
Athlon Silver 3050e[94] 2 (4) 1.4 2.8 YM3050C7T2OFG
Athlon Silver 3050U[95] 2 (2) 2.3 3.2 128:?:?
2 CU
1100 MHz 281.6 12-25 W YM3050C4T2OFG
Athlon Gold 3150U[96] 2 (4) 2.6 3.3 192:?:?
3 CU
1000 MHz 384 YM3150C4T2OFG
Ryzen 3 3250U[97] 2.6 3.5 1200 MHz 460.8 YM3250C4T2OFG
  1. AMD in its technical documentation uses KB, which it defines as Kilobyte and as equal to 1024 bytes, and MB, which it defines as Megabyte and as equal to 1024 KB.[92]
  2. Unified Shaders : Texture Mapping Units : Render Output Units and Compute Units (CU)
  3. Single precision performance is calculated from the base (or boost) core clock speed based on a FMA operation.

Renoir (2020)

Model Release
date
Process CPU GPU Memory support TDP Part number
Cores/FPUs
(threads)
Clock rate (GHz) Cache[lower-alpha 1] Model &
config[lower-alpha 2]
Clock Processing
power
(GFLOPS)[lower-alpha 3]
Base Boost L1 L2 L3
Ryzen 3 4300U[99] March 16, 2020 TSMC
7FF
4 (4) 2.7 3.7 32 KB inst.
32 KB data
per core
512 KB
per core
4 MB Vega 5
320:20:8
5 CU
1400 MHz 896 DDR4-3200

LPDDR4-4266

dual-channel

10-25 W 100-000000085
Ryzen 3 Pro 4450U May 7, 2020 4 (8) 2.5 100-000000104
Ryzen 5 4500U[100] March 16, 2020 6 (6) 2.3 4.0 8 MB Vega 6
384:24:8
6 CU
1500 MHz 1152 100-000000084
Ryzen 5 4600U[101] 6 (12) 2.1 100-000000105
Ryzen 5 Pro 4650U May 7, 2020 100-000000103
Ryzen 5 4600HS[102] March 16, 2020 3.0 35 W
Ryzen 5 4600H[103] 35-54 W 100-000000100
Ryzen 7 4700U[104] 8 (8) 2.0 4.1 Vega 7
448:28:8
7 CU
1600 MHz 1433.6 10-25 W 100-000000083
Ryzen 7 Pro 4750U May 7, 2020 8 (16) 1.7 100-000000101
Ryzen 7 4800U[105] March 16, 2020 1.8 4.2 Vega 8
512:32:8
8 CU
1750 MHz 1792 100-000000082
Ryzen 7 4800HS[106] 2.9 Vega 7
448:28:8
7 CU
1600 MHz 1433.6 35 W
Ryzen 7 4800H[107] 35-54 W 100-000000098
Ryzen 9 4900HS[108] 3 4.3 Vega 8
512:32:8
8 CU
1750 MHz 1792 35 W
Ryzen 9 4900H[109] 3.3 4.4 35-54W
  1. AMD in its technical documentation uses KB, which it defines as Kilobyte and as equal to 1024 bytes, and MB, which it defines as Megabyte and as equal to 1024 KB.[98]
  2. Unified Shaders : Texture Mapping Units : Render Output Units and Compute Units (CU)
  3. Single precision performance is calculated from the base (or boost) core clock speed based on a FMA operation.

Embedded APUs

Model Release
date
Fab CPU GPU Memory
support
Ethernet TDP Junction temperature (°C)
Cores
(threads)
Clock rate (GHz) Cache[lower-roman 1] Model Config[lower-roman 2] Clock Processing
power
(GFLOPS)[lower-roman 3]
Base Boost L1 L2 L3
V1500B Unknown 14nm 4 (8) 2.2 N/A 64 KB inst.
32 KB data
per core
512 KB
per core
4 MB N/A DDR4-2400
dual-channel
2 × 10GbE 12–25 W 0-105
V1780B Unknown 3.35 3.6 DDR4-3200
dual-channel
35-54 W
V1202B Unknown 2 (4) 2.3 3.2 RX Vega 3 192:12:16
3 CU
1000 MHz 384 DDR4-2400
dual-channel
12–25 W
V1404I Unknown 4 (8) 2.0 3.6 RX Vega 8 512:32:16
8 CU
1100 MHz 1126.4 -40-105
V1605B Unknown 0-105
V1756B Unknown 3.25 1300 MHz 1331.2 DDR4-3200
dual-channel
35–54 W
V1807B Unknown 3.35 3.8 RX Vega 11 704:44:16
11 CU
1830.4
  1. AMD defines 1 kilobyte (KB) as 1024 bytes, and 1 megabyte (MB) as 1024 kilobytes.[59]
  2. Unified Shaders : Texture Mapping Units : Render Output Units and Compute Units (CU)
  3. Single-precision performance is calculated from the base (or boost) core clock speed based on a FMA operation.
Model Release
date
CPU GPU Memory
support
TDP
Cores
(threads)
Clock rate (GHz) Cache[lower-roman 1] Model Config[lower-roman 2] Clock Processing
power
(GFLOPS)[lower-roman 3]
Base Boost XFR L1 L2 L3
R1102G February 25, 2020 2 (2) 1.2 2.6 Unknown 64 KB inst.
32 KB data
per core
512 KB
per core
4 MB RX Vega 3 192:12:4
3 CU
1000 MHz 384 DDR4-2400
single-channel
6 W
R1305G 2 (4) 1.5 2.8 Unknown DDR4-2400
dual-channel
8-10 W
R1505G April 16, 2019 2.4 3.3 Unknown 12–25 W
R1606G 2.6 3.5 Unknown 1200 MHz 460.8
  1. AMD defines 1 kilobyte (KB) as 1024 bytes, and 1 megabyte (MB) as 1024 kilobytes.[59]
  2. Unified Shaders : Texture Mapping Units : Render Output Units and Compute Units (CU)
  3. Single-precision performance is calculated from the base (or boost) core clock speed based on a FMA operation.

Radeon features

The following table shows features of AMD's GPUs (see also: List of AMD graphics processing units).

Name of GPU series Wonder Mach 3D Rage Rage Pro Rage R100 R200 R300 R400 R500 R600 RV670 R700 Evergreen Northern
Islands
Southern
Islands
Sea
Islands
Volcanic
Islands
Arctic
Islands/Polaris
Vega Navi
Released 1986 1991 1996 1997 1998 Apr 2000 Aug 2001 Sep 2002 May 2004 Oct 2005 May 2007 Nov 2007 Jun 2008 Sep 2009 Oct 2010 Jan 2012 Sep 2013 Jun 2015 Jun 2016 Jun 2017 Jul 2019
Marketing Name Wonder Mach 3D Rage Rage Pro Rage Radeon 7000 Radeon 8000 Radeon 9000 Radeon X700/X800 Radeon X1000 Radeon HD 1000/2000 Radeon HD 3000 Radeon HD 4000 Radeon HD 5000 Radeon HD 6000 Radeon HD 7000 Radeon Rx 200 Radeon Rx 300 Radeon RX 400/500 Radeon RX Vega/Radeon VII(7nm) Radeon RX 5000
AMD support
Kind 2D 3D
Instruction set Not publicly known TeraScale instruction set GCN instruction set RDNA instruction set
Microarchitecture TeraScale 1 TeraScale 2 (VLIW5) TeraScale 3 (VLIW4) GCN 1st gen GCN 2nd gen GCN 3rd gen GCN 4th gen GCN 5th gen RDNA
Type Fixed pipeline[lower-alpha 1] Programmable pixel & vertex pipelines Unified shader model
Direct3D N/A 5.0 6.0 7.0 8.1 9.0
11 (9_2)
9.0b
11 (9_2)
9.0c
11 (9_3)
10.0
11 (10_0)
10.1
11 (10_1)
11 (11_0) 11 (11_1)
12 (11_1)
11 (12_0)
12 (12_0)
11 (12_1)
12 (12_1)
Shader model N/A 1.4 2.0+ 2.0b 3.0 4.0 4.1 5.0 5.1 5.1
6.3
6.4
OpenGL N/A 1.1 1.2 1.3 2.0[lower-alpha 2] 3.3 4.5 (on Linux + Mesa 3D: 4.2 with FP64 HW support, 3.3 without)[110][3][111][lower-alpha 3] 4.6 (on Linux: 4.6 (Mesa 20.0))
Vulkan N/A 1.0
(Win 7+ or Mesa 17+)
1.2 (Adrenalin 20.1, Linux Mesa 20.0)
OpenCL N/A Close to Metal 1.1 1.2 2.0 (Adrenalin driver on Win7+)
(1.2 on Linux, 2.1 with AMD ROCm)
?
HSA N/A ?
Video decoding ASIC N/A Avivo/UVD UVD+ UVD 2 UVD 2.2 UVD 3 UVD 4 UVD 4.2 UVD 5.0 or 6.0 UVD 6.3 UVD 7[112][lower-alpha 4] VCN 2.0[112][lower-alpha 4]
Video encoding ASIC N/A VCE 1.0 VCE 2.0 VCE 3.0 or 3.1 VCE 3.4 VCE 4.0[112][lower-alpha 4]
Power saving ? PowerPlay PowerTune PowerTune & ZeroCore Power ?
TrueAudio N/A Via dedicated DSP Via shaders
FreeSync N/A 1
2
HDCP[lower-alpha 5] ? 1.4 1.4
2.2
1.4
2.2
2.3
PlayReady[lower-alpha 5] N/A 3.0 3.0
Supported displays[lower-alpha 6] 1–2 2 2–6 ?
Max. resolution ? 2–6 ×
2560×1600
2–6 ×
4096×2160 @ 60 Hz
2–6 ×
5120×2880 @ 60 Hz
3 ×
7680×4320 @ 60 Hz[113]
?
/drm/radeon[lower-alpha 7] N/A
/drm/amdgpu[lower-alpha 7] N/A Experimental[114]
  1. The Radeon 100 Series has programmable pixel shaders, but do not fully comply with DirectX 8 or Pixel Shader 1.0. See article on R100's pixel shaders.
  2. These series do not fully comply with OpenGL 2+ as the hardware does not support all types of non-power of two (NPOT) textures.
  3. OpenGL 4+ compliance requires supporting FP64 shaders and these are emulated on some TeraScale chips using 32-bit hardware.
  4. The UVD and VCE were replaced by the Video Core Next (VCN) ASIC in the Raven Ridge APU implementation of Vega.
  5. To play protected video content, it also requires card, operating system, driver, and application support. A compatible HDCP display is also needed for this. HDCP is mandatory for the output of certain audio formats, placing additional constraints on the multimedia setup.
  6. More displays may be supported with native DisplayPort connections, or splitting the maximum resolution between multiple monitors with active converters.
  7. DRM (Direct Rendering Manager) is a component of the Linux kernel. Support in this table refers to the most current version.

See also

References

  1. "Radeon Software Crimson ReLive Edition 17.8.1 Release Notes". AMD. Retrieved 20 April 2018.
  2. "AMDGPU-PRO Driver for Linux Release Notes". 2017. Archived from the original on 15 August 2017. Retrieved 20 April 2018.
  3. "Mesamatrix". mesamatrix.net. Retrieved 22 April 2018.
  4. "Radeon Software Adrenalin Edition 18.3.4 Release Notes". AMD. Retrieved 20 April 2018.
  5. "Radeon™ Software for Linux® with Vulkan® 1.1 support". AMD. Retrieved 21 April 2018.
  6. "AMD Open Source Driver for Vulkan". GPUOpen. Retrieved 20 April 2018.
  7. "Radeon Vega Frontier Edition: First AMD Vega GPU is for the pros". Ars Technica. Archived from the original on 17 May 2017. Retrieved 17 May 2017.
  8. "AMD's Radeon RX Vega 64 will cost $499 and battle the GeForce GTX 1080". PCWorld. Archived from the original on 1 August 2017. Retrieved 6 August 2017.
  9. "AMD Introduces New Ryzen Mobile Processors, the World's Fastest Processor for Ultrathin Notebooks¹". amd.com. Advanced Micro Devices, Inc. Archived from the original on 30 October 2018. Retrieved 30 October 2018.
  10. "First AMD Ryzen™ Desktop APUs Featuring World's Most Powerful Graphics on a Desktop Processor¹ Available Worldwide Today". amd.com. Advanced Micro Devices, Inc. Archived from the original on 30 October 2018. Retrieved 30 October 2018.
  11. "AMD Launches EPYC™ Embedded and Ryzen™ Embedded Processors for End-to-End "Zen" Experiences from the Core to the Edge". amd.com. Archived from the original on 30 October 2018. Retrieved 30 October 2018.
  12. "AMD Reimagines Everyday Computing with New "Zen" Based Athlon™ Desktop Processors, Expands Commercial Client Portfolio with 2nd Generation Ryzen™ PRO Desktop Processors". amd.com. Advanced Micro Devices, Inc. Archived from the original on 30 October 2018. Retrieved 30 October 2018.
  13. "AMD Reveals Radeon VII: High-End 7nm Vega Video Card Arrives February 7th For $699". Anandtech. 9 January 2019. Archived from the original on 9 January 2019. Retrieved 27 January 2019.
  14. "CES 2019: AMD's Radeon 7 pushes PC gaming to 'the bleeding edge'". Cnet. 10 January 2019. Retrieved 27 January 2019.
  15. Smith, Ryan (5 January 2017). "The AMD Vega GPU Architecture Teaser". Anandtech.com. Retrieved 30 June 2017.
  16. Shrout, Ryan (12 December 2016). "Radeon Instinct Machine Learning GPUs include Vega, Preview Performance". PC Per. Retrieved 12 December 2016.
  17. "Vega: AMD's New Graphics Architecture for Virtually Unlimited Workloads". www.amd.com. Archived from the original on 25 June 2017. Retrieved 17 May 2017.
  18. "AMD Ryzen CPUs: 7 all-new details revealed at CES 2017". PCWorld. Retrieved 17 May 2017.
  19. Kampman, Jeff (5 January 2017). "The curtain comes up on AMD's Vega architecture". TechReport.com. Retrieved 10 January 2017.
  20. Shrout, Ryan (5 January 2017). "AMD Vega GPU Architecture Preview: Redesigned Memory Architecture". PC Perspective. Retrieved 10 January 2017.
  21. Smith, Ryan (5 January 2017). "The AMD Vega Architecture Teaser: Higher IPC, Tiling, & More, coming in H1'2017". Anandtech.com. Archived from the original on 10 January 2017. Retrieved 10 January 2017.
  22. "Vega Architecture". Radeon Gaming. Retrieved 4 April 2018.
  23. "AMD Vega Microarchitecture Technical Overview". TechPowerUp. Retrieved 4 April 2018.
  24. Smith, Ryan (30 July 2017). "Radeon RX Vega Unveiled". anand. Retrieved 31 July 2017.
  25. "Radeon RX Vega 56". Radeon RX Vega 56. AMD. Retrieved 31 July 2017.
  26. Angelini, Chris (30 July 2017). "AMD Radeon RX Vega 64: Bundles, Specs, And Aug. 14 Availability". Tom's Hardware. Retrieved 31 July 2017.
  27. "14LPP 14nm FinFET Technology". GLOBALFOUNDRIES. GLOBALFOUNDRIES.
  28. Schor, David (22 July 2018). "VLSI 2018: GlobalFoundries 12nm Leading-Performance, 12LP". WikiChip Fuse. Retrieved 31 May 2019.
  29. "Radeon RX Vega 64". Radeon RX Vega 64. AMD. Retrieved 31 July 2017.
  30. Smith, Ryan (9 January 2019). "AMD Reveals Radeon VII". anandtech. Retrieved 10 January 2019.
  31. Hruska, Joel (1 January 2019). "The AMD Radeon VII's Core Configuration Has Been Misreported". etremetech. Retrieved 11 January 2019.
  32. Williams, Rob (13 January 2019). "AMD's Radeon VII GPU Will Not Support Uncapped Double-Precision (FP64)". techgage. Retrieved 14 January 2019.
  33. Liu, Zhiye (14 January 2019). "AMD Radeon VII Will Ship Without Double-Precision". Tom's Hardware. Retrieved 16 January 2019.
  34. "AMD Radeon VII". techgage. Retrieved 16 January 2019.
  35. Ryan Smith [@RyanSmithAT] (16 January 2019). "Alright, I finally have the Radeon VII FP64 performance matter sorted out with AMD. Contrary to earlier statements, it is being throttled. Radeon VII's rate will be 1:8, versus Vega 20's native 1:2 rate. Notably, this is still twice the native FP64 rate of all other Vegas" (Tweet) via Twitter.
  36. "Radeon™ Pro Graphics - Workstation Solutions - AMD". www.amd.com.
  37. Shrout, Ryan (17 July 2017). "The AMD Radeon Vega Frontier Edition 16GB Liquid-Cooled Review". PC Perspective. Retrieved 26 July 2017.
  38. "Processor Programming Reference (PPR) for AMD Family 17h Model 01h, Revision B1 Processors" (PDF). AMD Technical Documentation. AMD Developer Central: Advanced Micro Devices, Inc. 15 April 2017. p. 25. Retrieved 1 November 2019.
  39. "Processor Specifications". AMD. Retrieved 6 September 2018.
  40. "AMD Announces New $55 Low-Power Processor: Athlon 200GE". AnandTech. Retrieved 6 September 2018.
  41. "Processor Specifications". AMD. Retrieved 6 September 2018.
  42. Günsch, Michael. "AMD: Marktstart für Athlon 220GE und 240GE". ComputerBase (in German). Retrieved 21 December 2018.
  43. TechPowerUp Athlon 3000G Review
  44. "2nd Gen AMD Ryzen™ 3 2200GE Desktop Processor". AMD. Retrieved 19 April 2018.
  45. Shilov, Anton (12 February 2018). "AMD Readies Ryzen 3 2200GE & Ryzen 5 2400GE APUs with Reduced TDP". Anandtech. Retrieved 12 February 2018.
  46. https://www.amd.com/en/products/apu/amd-ryzen-3-pro-2200ge
  47. "AMD Ryzen™ 3 2200G". Retrieved 19 January 2018.
  48. "AMD's 2nd-gen Ryzen is coming in April, desktop Ryzen APUs arrive February 12". TechSpot. Retrieved 10 June 2019.
  49. "Specs". www.amd.com. Retrieved 10 June 2019.
  50. "AMD Ryzen™ 5 2400GE". Retrieved 19 April 2018.
  51. "AMD Radeon RX Vega 11 Specs | TechPowerUp GPU Database". Techpowerup.com. Retrieved 10 June 2019.
  52. "Specs". www.amd.com. Retrieved 10 June 2019.
  53. "AMD Ryzen™ 5 2400G". Retrieved 19 January 2018.
  54. Peter Bright - Jan 8, 2018 9:50 pm UTC (8 January 2018). "AMD's 2018 roadmap: Desktop APUs in February, second-generation Ryzen in April". Ars Technica. Retrieved 10 June 2019.
  55. "Specs". www.amd.com. Retrieved 10 June 2019.
  56. "Processor Programming Reference (PPR) for AMD Family 17h Model 01h, Revision B1 Processors" (PDF). AMD Technical Documentation. AMD Developer Central: Advanced Micro Devices, Inc. 15 April 2017. p. 25. Retrieved 1 November 2019.
  57. Hong, Sophia. "AMD Announces Worldwide Availability of AMD Ryzen™ PRO 3000 Series Processors Designed to Power the Modern Business PC". Globenewsire.
  58. Cutress, Ian. "AMD Ryzen 3000 APUs: Up to Vega 11, More MHz, Under $150, Coming July 7th". AnandTech.
  59. "Processor Programming Reference (PPR) for AMD Family 17h Model 01h, Revision B1 Processors" (PDF). Processor Programming Reference (PPR) for AMD Family 17h Model 01h, Revision B1 Processors. AMD. Retrieved 14 July 2017.
  60. "Processor Programming Reference (PPR) for AMD Family 17h Model 01h, Revision B1 Processors" (PDF). AMD Technical Documentation. AMD Developer Central: Advanced Micro Devices, Inc. 15 April 2017. p. 25. Retrieved 1 November 2019.
  61. "AMD Athlon™ PRO 200U Mobile Processor with Radeon™ Vega 3 Graphics". Retrieved 30 April 2019.
  62. "AMD Radeon Vega 3 Mobile Specs | TechPowerUp GPU Database". Techpowerup.com. Retrieved 10 June 2019.
  63. "AMD Athlon™ 300U Mobile Processor with Radeon™ Vega 3 Graphics". Retrieved 8 January 2019.
  64. "AMD Ryzen™ 3 2200U". Retrieved 21 January 2018.
  65. "AMD Ryzen™ 3 3200U Mobile Processor with Radeon™ Vega 3 Graphics". Retrieved 6 January 2019.
  66. "AMD Ryzen™ 3 2300U". Retrieved 21 January 2018.
  67. "AMD Radeon Vega 6 Mobile Specs | TechPowerUp GPU Database". Techpowerup.com. Retrieved 10 June 2019.
  68. "AMD Ryzen™ 3 PRO 2300U". 21 January 2018. Retrieved 8 January 2018.
  69. Cutress, Ian (15 May 2018). "AMD Launches Ryzen Pro with Vega: Mobile APUs and Desktop APUs". Anandtech. Retrieved 28 August 2018.
  70. "AMD Ryzen™ 5 2500U". Retrieved 21 January 2018.
  71. "AMD Radeon Vega 8 Specs | TechPowerUp GPU Database". Techpowerup.com. Retrieved 10 June 2019.
  72. "AMD Ryzen™ 5 PRO 2500U". 21 January 2018. Retrieved 8 January 2018.
  73. "AMD Launches Ryzen 7 2800H & Ryzen 5 2600H APUs for High-Performance Laptops". Anandtech.com. Retrieved 10 June 2019.
  74. "Specs" (PDF). www.amd.com. Retrieved 10 June 2019.
  75. "AMD Ryzen™ 7 2700U". Retrieved 21 January 2018.
  76. "AMD Radeon RX Vega 10 Mobile Specs | TechPowerUp GPU Database". Techpowerup.com. Retrieved 10 June 2019.
  77. "AMD Ryzen™ 7 PRO 2700U". 21 January 2018. Retrieved 8 January 2018.
  78. "Processor Programming Reference (PPR) for AMD Family 17h Model 01h, Revision B1 Processors" (PDF). AMD Technical Documentation. AMD Developer Central: Advanced Micro Devices, Inc. 15 April 2017. p. 25. Retrieved 1 November 2019.
  79. "AMD Ryzen™ 3 3300U Mobile Processor with Radeon™ Vega 6 Graphics". Retrieved 6 January 2019.
  80. "AMD Radeon Vega 6 Mobile Specs | TechPowerUp GPU Database". Techpowerup.com. Retrieved 10 June 2019.
  81. "AMD Ryzen™ 3 PRO 3300U Mobile Processor with Radeon™ Vega 6 Graphics".
  82. "AMD Ryzen™ 5 3500U Mobile Processor with Radeon™ Vega 8 Graphics". Retrieved 6 January 2019.
  83. "AMD Radeon Vega 8 Specs | TechPowerUp GPU Database". Techpowerup.com. Retrieved 10 June 2019.
  84. "AMD Ryzen™ 5 PRO 3500U Mobile Processor with Radeon™ Vega 8 Graphics".
  85. "AMD Ryzen™ 5 3550H Mobile Processor with Radeon™ Vega 8 Graphics". 21 January 2018. Retrieved 8 January 2018.
  86. "AMD Ryzen™ 5 3580U Microsoft Surface® Edition".
  87. "AMD Ryzen™ 7 3700U Mobile Processor with Radeon™ RX Vega 10 Graphics". Retrieved 6 January 2019.
  88. "AMD Radeon RX Vega 10 Mobile Specs | TechPowerUp GPU Database". Techpowerup.com. Retrieved 10 June 2019.
  89. "AMD Ryzen™ 7 PRO 3700U Mobile Processor with Radeon™ Vega 10 Graphics".
  90. "AMD Ryzen™ 7 3750H Mobile Processor with Radeon™ RX Vega 10 Graphics". Retrieved 6 January 2019.
  91. "AMD Ryzen™ 7 3780U Microsoft Surface® Edition".
  92. "Processor Programming Reference (PPR) for AMD Family 17h Model 01h, Revision B1 Processors" (PDF). AMD Technical Documentation. AMD Developer Central: Advanced Micro Devices, Inc. 15 April 2017. p. 25. Retrieved 1 November 2019.
  93. "AMD 3020e". Retrieved 20 May 2020.
  94. "AMD Athlon™ Silver 3050e". Retrieved 20 May 2020.
  95. "AMD Athlon™ Silver 3050U". Retrieved 7 January 2020.
  96. "AMD Athlon™ Gold 3150U". Retrieved 8 January 2020.
  97. "AMD Ryzen™ 3 3250U". Retrieved 8 January 2020.
  98. "Processor Programming Reference (PPR) for AMD Family 17h Model 01h, Revision B1 Processors" (PDF). AMD Technical Documentation. AMD Developer Central: Advanced Micro Devices, Inc. 15 April 2017. p. 25. Retrieved 1 November 2019.
  99. "AMD Ryzen™ 3 4300U". Retrieved 7 January 2020.
  100. "AMD Ryzen™ 5 4500U". Retrieved 7 January 2020.
  101. "AMD Ryzen™ 3 4600U". Retrieved 7 January 2020.
  102. "AMD Ryzen™ 5 4600HS". Retrieved 16 March 2020.
  103. "AMD Ryzen™ 5 4600H". Retrieved 7 January 2020.
  104. "AMD Ryzen™ 7 4700U". 21 January 2018. Retrieved 7 January 2020.
  105. "AMD Ryzen™ 7 4800U". Retrieved 7 January 2020.
  106. "AMD Ryzen™ 7 4800HS". Retrieved 16 March 2020.
  107. "AMD Ryzen™ 7 4800H". Retrieved 7 January 2020.
  108. "AMD Ryzen™ 9 4900HS". Retrieved 16 March 2020.
  109. "AMD Ryzen™ 9 4900H". Retrieved 16 March 2020.
  110. "AMD Radeon Software Crimson Edition Beta". AMD. Retrieved 20 April 2018.
  111. "RadeonFeature". X.Org Foundation. Retrieved 20 April 2018.
  112. Killian, Zak (22 March 2017). "AMD publishes patches for Vega support on Linux". Tech Report. Retrieved 23 March 2017.
  113. "Radeon's next-generation Vega architecture" (PDF). Radeon Technologies Group (AMD). Archived from the original (PDF) on 6 September 2018. Retrieved 13 June 2017.
  114. Larabel, Michael (7 December 2016). "The Best Features of the Linux 4.9 Kernel". Phoronix. Retrieved 7 December 2016.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.