Orders of magnitude (magnetic field)

This page lists examples of magnetic induction B in teslas and gauss produced by various sources, grouped by orders of magnitude.

Note:

  • Traditionally, magnetizing field H, is measured in amperes per meter.
  • Magnetic induction B (also known as magnetic flux density) has the SI unit tesla [T or Wb/m2].[1]
  • One tesla is equal to 104 gauss.
  • Magnetic field drops off as the cube of the distance from a dipole source.

Orders of Magnitude

These examples attempt to make the measuring point clear, usually the surface of the item mentioned.

List of orders of magnitude for magnetic fields
Factor (tesla) SI prefix Value (SI units) Value (CGS units) Item
10−18attotesla5 aT50 fGSQUID magnetometers on Gravity Probe B gyroscopes measure fields at this level over several days of averaged measurements[2]
10−15femtotesla2 fT20 pGSQUID magnetometers on Gravity Probe B gyros measure fields at this level in about one second
10−12picotesla100 fT to 1 pT1 nG to 10 nGHuman brain magnetic field
10−1110 pT100 nGIn September 2006, NASA found "potholes" in the magnetic field in the heliosheath around our solar system that are 10 picoteslas as reported by Voyager 1[3]
10−9nanotesla100 pT to 10 nT1 μG to 100 μGMagnetic field strength in the heliosphere
10−7 60 nT to 700 nT 600 μG to 7 mG Magnetic field produced by a toaster, in use, at a distance of 30 cm (1 ft)[4]
100 nT to 500 nT 1 mG to 5 mG Magnetic field produced by residential electric distribution lines (34.5 kV) at a distance of 30 cm (1 ft)[4][5]
10−6 microtesla 1.3 μT to 2.7 μT 13 mG to 27 mG Magnetic field produced by high power (500 kV) transmission lines at a distance of 30 m (100 ft)[5]
4 μT to 8 μT40 mG to 80 mGMagnetic field produced by a microwave oven, in use, at a distance of 30 cm (1 ft)[4]
10−5   24 μT 240 mG Strength of magnetic tape near tape head
31 μT310 mGStrength of Earth's magnetic field at 0° latitude (on the equator)
58 μT580 mGStrength of Earth's magnetic field at 50° latitude
10−4 500 μT 5 G The suggested exposure limit for cardiac pacemakers by American Conference of Governmental Industrial Hygienists (ACGIH)
10−3 millitesla 5 mT50 GThe strength of a typical refrigerator magnet[6]
10−2 centitesla
10−1decitesla150 mT1.5 kGThe magnetic field strength of a sunspot
100 tesla 1 T to 2.4 T10 kG to 24 kGCoil gap of a typical loudspeaker magnet.[7]
1 T to 2 T10 kG to 20 kGInside the core of a modern 50/60 Hz power transformer[8][9]
1.25 T12.5 kGStrength of a modern neodymium–iron–boron (Nd2Fe14B) rare earth magnet. A coin-sized neodymium magnet can lift more than 9 kg, erase credit cards.[10]
1.5 T to 7 T15 kG to 30 kGStrength of medical magnetic resonance imaging systems in practice, experimentally up to 11.7 T[11][12][13]
9.4 T94 kGModern high resolution research magnetic resonance imaging system; field strength of a 400 MHz NMR spectrometer
101 decatesla 11.7 T117 kGField strength of a 500 MHz NMR spectrometer
16 T160 kGStrength used to levitate a frog[14]
23.5 T235 kGField strength of a 1 GHz NMR spectrometer[15]
38 T380 kGStrongest continuous magnetic field produced by non-superconductive resistive magnet.[16]
45 T450 kGStrongest continuous magnetic field yet produced in a laboratory (Florida State University's National High Magnetic Field Laboratory in Tallahassee, USA).[17]
102 hectotesla  100 T1 MGStrongest pulsed non-destructive magnetic field produced in a laboratory, Pulsed Field Facility at National High Magnetic Field Laboratory's, Los Alamos National Laboratory, Los Alamos, NM, USA).[18]
103 kilotesla 1.2 kT12 MGRecord for indoor pulsed magnetic field, (University of Tokyo, 2018) [19]
2.8 kT28 MGRecord for human produced, pulsed magnetic field, (VNIIEF, 2001)[20]
10435 kT350 MGMagnetic field felt by valence electrons in a Xenon atom due to the spin–orbit effect.[21]
106megatesla1 MT to 100 MT10 GG to 1 TGStrength of a non-magnetar neutron star.[22]
108 – 1011gigatesla100 MT to 100 GT1 TG to 1 PGStrength of a magnetar.[22]
1014teratesla100 TT1 EGStrength of magnetic fields inside heavy ion collisions at RHIC.[23][24]

References

  1. "Bureau International des Poids et Mesures, The International System of Units (SI), 8th edition 2006" (PDF). bipm.org. 2012-10-01. Retrieved 2013-05-26.
  2. Range, Shannon K'doah. Gravity Probe B: Examining Einstein's Spacetime with Gyroscopes. National Aeronautics and Space Administration. October 2004.
  3. "Surprises from the Edge of the Solar System". NASA. 2006-09-21. Archived from the original on 2008-09-29. Retrieved 2017-07-12.
  4. "Magnetic Field Levels Around Homes" (PDF). UC San Diego Dept. of Environment, Health & Safety (EH&S). p. 2. Retrieved 2017-03-07.
  5. "EMF in Your Environment: Magnetic Field Measurements of Everyday Electrical Devices". United States Environmental Protection Agency. 1992. pp. 23–24. Retrieved 2017-03-07.
  6. "Information on MRI Technique". Nevus Network. Retrieved 2014-01-28.
  7. Elliot, Rod. "Power Handling Vs. Efficiency". Retrieved 2008-02-17.
  8. "Inductors and transformers" (PDF). eece.ksu.edu. 2003-08-12. Archived from the original (PDF) on September 8, 2008. Retrieved 2013-05-26. A modern well-designed 60 Hz power transformer will probably have a magnetic flux density between 1 and 2 T inside the core.
  9. "Trafo-Bestimmung 3von3". radiomuseum.org. 2009-07-11. Retrieved 2013-06-01.
  10. "The Tesla Radio Conspiracy". teslaradioconspiracy.blogspot.com.
  11. Savage, Niel (2013-10-23). "The World's Most Powerful MRI Takes Shape".
  12. Smith, Hans-Jørgen. "Magnetic resonance imaging". Medcyclopaedia Textbook of Radiology. GE Healthcare. Archived from the original on 2012-02-07. Retrieved 2007-03-26.
  13. Orenstein, Beth W. (2006-02-16). "Ultra High-Field MRI — The Pull of Big Magnets". Radiology Today. 7 (3). p. 10. Archived from the original on March 15, 2008. Retrieved 2008-07-10.
  14. "Frog defies gravity". New Scientist. No. 2077. 12 April 1997.
  15. "23.5 Tesla Standard-Bore, Persistent Superconducting Magnet". Archived from the original on 2013-06-28. Retrieved 2013-05-08.
  16. ingevoerd, Geen OWMS velden. "HFML sets world record with a new 38 tesla magnet". Radboud Universiteit.
  17. "World's Most Powerful Magnet Tested Ushers in New Era for Steady High Field Research". National High Magnetic Field Laboratory.
  18. "Pulsed Field Facility - MagLab". Pulsed Field Facility.
  19. Nakamura, D.; Ikeda, A.; Sawabe, H.; Matsuda, Y. H.; Takeyama, S. (2018). "Record indoor magnetic field of 1200 T generated by electromagnetic flux-compression". Review of Scientific Instruments. 89 (9): 095106. Bibcode:2018RScI...89i5106N. doi:10.1063/1.5044557. PMID 30278742.
  20. Bykov, A.I.; Dolotenko, M.I.; Kolokolchikov, N.P.; Selemir, V.D.; Tatsenko, O.M. (2001). "VNIIEF achievements on ultra-high magnetic fields generation". Physica B: Condensed Matter. 294–295: 574–578. Bibcode:2001PhyB..294..574B. doi:10.1016/S0921-4526(00)00723-7.
  21. Herman, Frank (15 December 1963). "Relativistic Corrections to the Band Structure of Tetrahedrally Bonded Semiconductors". Physical Review Letters. 11 (541). doi:10.1103/PhysRevLett.11.541.
  22. Kouveliotou, Chryssa; Duncan, Robert; Thompson, Christopher (February 2003). "Magnetars". Sci. Am. 288 (288N2): 24. Bibcode:2003SciAm.288b..34K. doi:10.1038/scientificamerican0203-34. PMID 12561456. Retrieved 7 January 2019.
  23. Tuchin, Kirill (2013). "Particle production in strong electromagnetic fields in relativistic heavy-ion collisions". Adv. High Energy Phys. 2013: 490495. arXiv:1301.0099. doi:10.1155/2013/490495.
  24. Bzdak, Adam; Skokov, Vladimir (29 March 2012). "Event-by-event fluctuations of magnetic and electric fields in heavy ion collisions". Physics Letters B. 710 (1): 171–174. arXiv:1111.1949. Bibcode:2012PhLB..710..171B. doi:10.1016/j.physletb.2012.02.065.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.