Mechanics of gelation

Mechanics of gelation describes processes relevant to sol-gel process.

In a static sense, the fundamental difference between a liquid and a solid is that the solid has elastic resistance against a shearing stress while a liquid does not. Thus, a simple liquid will not typically support a transverse acoustic phonon, or shear wave. Gels have been described by Born as liquids in which an elastic resistance against shearing survives, yielding both viscous and elastic properties. It has been shown theoretically that in a certain low-frequency range, polymeric gels should propagate shear waves with relatively low damping. The distinction between a sol (solution) and a gel therefore appears to be understood in a manner analogous to the practical distinction between the elastic and plastic deformation ranges of a metal. The distinction lies in the ability to respond to an applied shear force via macroscopic viscous flow.[1][2][3]

In a dynamic sense, the response of a gel to an alternating force (oscillation or vibration) will depend upon the period or frequency of vibration. As indicated here, even most simple liquids will exhibit some elastic response at shear rates or frequencies exceeding 5 x 106 cycles per second. Experiments on such short time scales probe the fundamental motions of the primary particles (or particle clusters) which constitute the lattice structure or aggregate. The increasing resistance of certain liquids to flow at high stirring speeds is one manifestation of this phenomenon. The ability of a condensed body to respond to a mechanical force by viscous flow is thus strongly dependent on the time scale over which the load is applied, and thus the frequency and amplitude of the stress wave in oscillatory experiments.[4][5][6]

See also

References

  1. Born, Max (1939). "Thermodynamics of Crystals and Melting". The Journal of Chemical Physics. AIP Publishing. 7 (8): 591–603. doi:10.1063/1.1750497. ISSN 0021-9606.
  2. Born, Max (1940). "On the stability of crystal lattices. I". Mathematical Proceedings of the Cambridge Philosophical Society. Cambridge University Press (CUP). 36 (2): 160–172. doi:10.1017/s0305004100017138. ISSN 0305-0041.
  3. Gennes, P.G.; Pincus, P. (1977). "Transverse acoustic waves in semi dilute polymer solutions". Journal de Chimie Physique. EDP Sciences. 74: 616–617. doi:10.1051/jcp/1977740616. ISSN 0021-7689.
  4. Philippoff, W. in Physical Acoustics, Ed. W. P. Mason, Vol. 28 (Academic Press, NY 1965).
  5. Hauser, E. A.; Reed, C. E. (1936). "Studies in Thixotropy. I. Development of a New Method for Measuring Particle-size Distribution in Colloidal Systems". The Journal of Physical Chemistry. American Chemical Society (ACS). 40 (9): 1169–1182. doi:10.1021/j150378a008. ISSN 0092-7325.
  6. Hauser, E. A.; Reed, C. E. (1937). "Studies in Thixotropy. II. The Thixotropic Behavior Structure of Bentonite". The Journal of Physical Chemistry. American Chemical Society (ACS). 41 (7): 911–934. doi:10.1021/j150385a002. ISSN 0092-7325.
  7. Brinker, C. J.; G. W. Scherer (1990). Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing. Academic Press. ISBN 0-12-134970-5.
  8. Walter, A. T. (1954). "Elastic properties of polvinyl chloride gels". Journal of Polymer Science. Wiley. 13 (69): 207–228. doi:10.1002/pol.1954.120136902. ISSN 0022-3832.
  9. Ferry, John D. (1941). "Studies of the Mechanical Properties of Substances of High Molecular Weight I. A Photoelastic Method for Study of Transverse Vibrations in Gels". Review of Scientific Instruments. AIP Publishing. 12 (2): 79–82. doi:10.1063/1.1769831. ISSN 0034-6748.
  10. Ferry, John D. (1942). "Mechanical Properties of Substances of High Molecular Weight. II. Rigidities of the System Polystyrene-Xylene and their Dependence upon Temperature and Frequency". Journal of the American Chemical Society. American Chemical Society (ACS). 64 (6): 1323–1329. doi:10.1021/ja01258a027. ISSN 0002-7863.
  11. Ferry, John D. (1948). "Mechanical Properties of Substances of High Molecular Weight. IV. Rigidities of Gelatin Gels; Dependence on Concentration, Temperature and Molecular Weight1". Journal of the American Chemical Society. American Chemical Society (ACS). 70 (6): 2244–2249. doi:10.1021/ja01186a074. ISSN 0002-7863.
  12. Ferry, John D; Fitzgerald, Edwin R (1953). "Mechanical and electrical relaxation distribution functions of two compositions of polyvinyl chloride and dimethylthianthrene". Journal of Colloid Science. Elsevier BV. 8 (2): 224–242. doi:10.1016/0095-8522(53)90041-5. ISSN 0095-8522.
  13. Ninomiya, Kazuhiko; Ferry, John D. (1967). "Dynamic mechanical properties of a gel of cellulose nitrate in diethyl phthalate: Reduced variable analysis in terms of amorphous and crystalline phases". Journal of Polymer Science Part A-2: Polymer Physics. Wiley. 5 (1): 195–210. doi:10.1002/pol.1967.160050116. ISSN 0449-2978.
  14. Beltman, H.; Lyklema, J. (1974). "Rheological monitoring of the formation of polyvinyl alcohol–Congo Red gels". Faraday Discuss. Chem. Soc. Royal Society of Chemistry (RSC). 57 (0): 92–100. doi:10.1039/dc9745700092. ISSN 0301-7249.
  15. Gettins, W. John; Jobling, Paul L.; Wyn-Jones, Evan (1978). "Ultrasonic relaxation spectra of agarose sols and gels". Journal of the Chemical Society, Faraday Transactions 2. Royal Society of Chemistry (RSC). 74: 1246. doi:10.1039/f29787401246. ISSN 0300-9238.
  16. Gormally, John; Pereira, Mavis C.; Wyn-Jones, Evan; Morris, Edwin R. (1982). "Ultrasonic relaxation of agarose and carrageenan gels. The role of solvent". Journal of the Chemical Society, Faraday Transactions 2. Royal Society of Chemistry (RSC). 78 (10): 1661. doi:10.1039/f29827801661. ISSN 0300-9238.
  17. Hecht, A.M.; Geissler, E. (1978). "Dynamic light scattering from polyacrylamide-water gels". Journal de Physique. EDP Sciences. 39 (6): 631–638. doi:10.1051/jphys:01978003906063100. ISSN 0302-0738.
  18. Geissler, E.; Hecht, A. M. (1980). "The Poisson Ratio in Polymer Gels". Macromolecules. American Chemical Society (ACS). 13 (5): 1276–1280. doi:10.1021/ma60077a047. ISSN 0024-9297.
  19. Tanaka, Toyoichi (1978-02-01). "Dynamics of critical concentration fluctuations in gels". Physical Review A. American Physical Society (APS). 17 (2): 763–766. doi:10.1103/physreva.17.763. ISSN 0556-2791.
  20. Tanaka, T., Sci. Amer., Vol. 244, p. 124 (1981).
  21. Tanaka, Toyoichi; Hocker, Lon O.; Benedek, George B. (1973). "Spectrum of light scattered from a viscoelastic gel". The Journal of Chemical Physics. AIP Publishing. 59 (9): 5151–5159. doi:10.1063/1.1680734. ISSN 0021-9606.
  22. Cole, Teresa; Lakhani, Amir A.; Stiles, P. J. (1977-03-28). "Influence of a One-Dimensional Superlattice on a Two-Dimensional Electron Gas". Physical Review Letters. American Physical Society (APS). 38 (13): 722–725. doi:10.1103/physrevlett.38.722. ISSN 0031-9007.
  23. Tanaka, Toyoichi (1978-03-20). "Collapse of Gels and the Critical Endpoint". Physical Review Letters. American Physical Society (APS). 40 (12): 820–823. doi:10.1103/physrevlett.40.820. ISSN 0031-9007.
  24. Tanaka, Toyoichi; Swislow, Gerald; Ohmine, Iwao (1979-06-04). "Phase Separation and Gelation in Gelatin Gels". Physical Review Letters. American Physical Society (APS). 42 (23): 1556–1559. doi:10.1103/physrevlett.42.1556. ISSN 0031-9007.
  25. Tanaka, Toyoichi; Fillmore, David; Sun, Shao-Tang; Nishio, Izumi; Swislow, Gerald; Shah, Arati (1980-11-17). "Phase Transitions in Ionic Gels". Physical Review Letters. American Physical Society (APS). 45 (20): 1636–1639. doi:10.1103/physrevlett.45.1636. ISSN 0031-9007.
  26. Tanaka, T.; Nishio, I.; Sun, S.-T.; Ueno-Nishio, S. (1982-10-29). "Collapse of Gels in an Electric Field". Science. American Association for the Advancement of Science (AAAS). 218 (4571): 467–469. doi:10.1126/science.218.4571.467. ISSN 0036-8075.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.