M. Zahid Hasan

M. Zahid Hasan is an endowed chair Eugene Higgins Professor of Physics at Princeton University.[1][2][3][4] He is known for his pioneering research on quantum matter exhibiting topological and emergent properties.[5][6][7][8][9][10][11] He is the Principal Investigator of Laboratory for Topological Quantum Matter and Advanced Spectroscopy at Princeton University[12][9] and a Visiting Faculty Scientist[13] at Lawrence Berkeley National Laboratory in California.[14][15][16] Since 2014 he has been an EPiQS-Moore Investigator awarded by the Betty and Gordon Moore foundation in Palo Alto (California) for his research on emergent quantum phenomena in topological matter.[17][18][19] He has been a Vanguard Fellow of the Aspen Institute (Washington DC) since 2014.[20] Hasan is an elected fellow of the American Academy of Arts and Sciences.[11][21]

M. Zahid Hasan
NationalityBangladeshi
Scientific career
FieldsQuantum Physics; Topology
InstitutionsDhaka College
Princeton University
Stanford University
SLAC National Accelerator Laboratory
University of Texas at Austin
Brookhaven National Laboratory
Bell Laboratories
University of California at Berkeley,
Lawrence Berkeley National Laboratory
Websitehttp://physics.princeton.edu/zahidhasangroup/

Born in Dhaka, Bangladesh, Hasan completed his higher secondary schooling at Dhaka College, then studied physics and mathematics at the University of Texas at Austin.[22] He obtained his Ph.D. in 2002 from Stanford University, working at SLAC/Stanford National Accelerator Laboratory and Brookhaven National Laboratory[9][14]. He was then a Robert H. Dicke Fellow in fundamental physics at Princeton and held visiting appointments at Bell Labs (in Murray Hill, New Jersey) and Lawrence Berkeley National Laboratory and joined the faculty rank at Princeton University.[14][15] While at the University of Texas at Austin his research focused on Dirac monopole field theory and quantum gravity upon completing coursework with Steven Weinberg and others at the Weinberg Theory Center in the 1990s.[22] Later while at Stanford University he became interested in exploring quantum many-body phenomena in unconventional superconductors and in developing new spectroscopic techniques at SLAC.[23][15] In 2016-2017 he joined Miller Institute of Basic Research in Science as a Visiting Miller Professor[13][24] at the University of California at Berkeley.[24] Since 2017, he holds the Eugene Higgins endowed professorship at Princeton University.[3][11] According to an interview[22] conducted by U.S. DOE (osti.gov) and other news media,[25][26] he was motivated to work on emergent quantum phenomena and the Standard Model analogs in materials following scientific exchanges with his Princeton colleague Philip W. Anderson in the early 2000s.[22][25][26] In a 2009 news release[25] published by the U.S. National Science Foundation, Anderson commented on Hasan’s early career work : "As a technical achievement, or a series of physics achievements alone, it is pretty spectacular," "For theoreticians," Anderson added, "the observation of such quantum effect (phenomena) is both interesting and significant."[25] Continuing along the same line of research but more broadly on quantum matter[27] he published several high-impact (highly cited) papers and in 2017 he was invited to deliver the Sir Nevill Mott (Nobel Laureate ’77) lecture series in physics,[28] UC-Berkeley Miller Institute professorship lectures in science[24], the S.N. Bose seminar[29] (endowed lecture series) in fundamental physics, Aspen public lecture, ICTP, HKUST and many other endowed or public lectures, colloquia and plenary talks around the world.[10][15][29][30] He has been one of the featured scientists on the occasion of Albert Einstein Annus Mirabilis at U.S. Department of Energy (WYP'05) in connection to his work on photoelectric effect[31] based spectroscopy of quantum states of matter.[22] He also served on the Einstein Annus Mirabilis committee at Princeton University.

Hasan's research is focused on fundamental condensed matter physics - either searching for, or in-depth exploration of novel phases of electronic matter. He is an expert in the physics of quantum matter in relation to condensed matter version of Dirac equation, Dirac monopole, quantum field theory, quantum magnetism[32], superconductivity,[27] topological phenomena,[9][15][33] [34][35][36][37] and advanced spectroscopic, scattering, sub-atomic resolution imaging-microscopy techniques.[10][38] In exploration of emergence in quantum systems, his research has focused on strongly correlated materials, broken symmetry, low-D antiferromagnetism, doped Mott phenomena[39] and superconductivity[40][41][27], symmetry protection and breaking in Dirac matter[27], vortex-lattice phase transition[42], quantum Hall-like topological phases,[6] Mott insulators[23], Kondo insulators/heavy fermions[43] and Anderson impurity physics[43][44], quantum spin chains/liquids[45][46], cuprate spin-1/2 ladders (2D Mott insulator), exotic superconductors[47][48], quantum phase transitions[49], mass generation of Dirac fermions in solids, Dirac cone superconductivity,[47] and topological quantum matter.[36][37][10] He played a pioneering role in demonstrating momentum-tuned resonant X-ray photon scattering technique[50] and nature of collective modes in Mott insulators and spin-1/2 quantum chains[27] exhibiting spin-charge separation (holon) type electron fractionalization[37][46]; quasiparticle quantum coherence[51], Mott-Hubbard physics in superconductors and related thermoelectrics[52], momentum-space emergent monopole[53], and also in the experimental discoveries of topological insulators[10][34] in 3D materials, hedgehog spin-textures[54] in magnets, space-group protected Dirac insulators and related matter[27], CDW-melted superconductors[55], demonstration of exception to Anderson theorem in unconventional superconductors,[48][56] Chern magnets,[57] Weyl magnets,[58] topological conductors[59], helical superconductors,[47] nodal-line semimetals and drumhead states,[60] Lorentz-violating materials,[61] signatures of Adler-Bell-Jackiw anomaly analogs, non-Fermi-liquid magnetic and thermoelectric metals,[40] Majorana zero modes (MZM) in two different classes of strong spin-orbit superconductors,[62][63] spin-helical states avoiding Anderson localization and topological metals,[64] novel Weyl materials,[65] Dirac matter on artificial topological lattice,[66] Hopf-link metals,[67] Berry curvature tunable magnets[68], topological chiral crystals,[4] Kagome topological magnets[12][32] and related new forms of quantum matter[69] using state-of-the-art spectroscopy, scattering and microscopy techniques in combination with theories of matter.[4][10][15][36][37][9][38][35] He co-proposed and co-led the scattering-spectroscopy MERLIN beam-line and end-station facility at the Lawrence Berkeley National Laboratory[64][70] and developed a laboratory for ultrafast and coherent quantum phenomena at Princeton University.[2]

A highly cited researcher listed in World's-Most-Influential-Scientific-Minds,[71] Hasan has published more than 200 research papers and articles on a variety of topics noted above (collectively receiving more than 50,000+ Google Scholar citations, and more than 30,000 Web of Science/Web of Knowledge citations with i10-index of 265+).[35][37][72][73][74][75][76] Many of his papers in Physical Review Letters, Nature and Science have been identified as "hot papers in the field" by Web of Science and highlighted in the "Search and Discovery" news section of Physics Today (American Institute of Physics), PhysicsWorld (Institute of Physics), Discover magazine, Scientific American, Physics, IEEE Spectrum magazine, Proceedings of the National Academy of Sciences, and other international science media.[5][6][7][8][9][10][72][77][78] His research papers on Weyl fermionic semimetals received more than 5,000 citations and was named a Top-10 breakthrough of the year by PhysicsWorld and his topological materials work (10,000+ citations) was listed among the top ten papers by Physics with criterion including "topics that really made waves in and beyond the physics community".[79][80][81] This work was also featured in Physics Today.[82] He is co-inventor of the United States Patent on Weyl topological semimetal discovery methods.[83][84][64][82] He has contributed in realizing several Standard Model or QFT (quantum field theory) analogs[10][37][84][78] and extensions including emergent Lorentz violation and topological response[4][37][64][85][86][77] in condensed matter systems.[10][15][16][18][36][37][38][82][87]

Fundamental knowledge frontiers developed by some of his works are now part of the pedagogical paradigm in the field. Several of his highly-cited research results noted above, published over the last two decades, are also discussed, featured or highlighted in several recent popular textbooks of condensed matter physics that are currently in use at many universities around the world.[88][89]

References

  1. "Hasan, M. Zahid". Princeton University.
  2. "M. Zahid Hasan". Princeton Institute for the Science and Technology of Materials.
  3. "Faculty named to endowed professorships". Princeton University. 17 May 2017.
  4. "Princeton scientists discover chiral crystals exhibiting exotic quantum effects". princeton.edu (Press release). Princeton University. 20 March 2019.
  5. Day, C. (2009). "Exotic spin textures show up in diverse materials". Physics Today. 32 (4): 4. Bibcode:2009PhT....62d..12D. doi:10.1063/1.3120883.
  6. Ornes, S. (2016). "Topological insulators promise computing advances, insights into matter itself". Proceedings of the National Academy of Sciences. 113 (37): 10223–10224. doi:10.1073/pnas.1611504113. ISSN 0027-8424. PMC 5027448. PMID 27625422.
  7. "Weyl fermions are spotted at long last". Physics World. 23 July 2015.
  8. "Welcome to the Weird Mathematical World of Topology". Discover Magazine. October 2018.
  9. Castelvecchi, D. (19 July 2017). "The strange topology that is reshaping physics". Nature. 547 (7663): 272–274. Bibcode:2017Natur.547..272C. doi:10.1038/547272a. PMID 28726840.
  10. "New Topological Phases of Matter: Platform for emergent Dirac, Majorana and Weyl fermions". California Institute of Technology (Caltech), 2016. Retrieved 30 April 2020.
  11. "Eleven Princeton faculty elected to American Academy of Arts and Sciences". Press Release, Princeton University. Retrieved 2020-04-24.
  12. "Physicists find new control knob for the quantum topological world". Physics World. 13 September 2018.
  13. Roberts, G. (2020). "Two Lab Scientists, Visiting Scientist Are New Academy Members". News Center (Press Release) Lawrence Berkeley National Laboratory, Berkeley, California. Retrieved 2020-04-29.
  14. "M. Zahid Hasan". Physics.
  15. "Observation of a New Class of Topological States of Quantum Matter". Physics Colloquium at Harvard University, Cambridge, MA (2008).
  16. ""How X-rays Pushed Topological Matter Research Over the Top" by Lawrence Berkeley National Laboratory". lbl.gov (Press release). Lawrence Berkeley National Laboratory. 14 April 2017.
  17. ""M. Zahid Hasan Experimental Investigator in Quantum Materials Award" by Moore foundation", moore.org, Betty and Gordon Moore foundation, Palo Alto, California, 2014
  18. ""Engineering topological behavior opens new frontier in quantum materials" News at Betty and Gordon Moore foundation", moore.org, Betty and Gordon Moore foundation, Palo Alto, California, 2017
  19. "Princeton scientists discover a 'tuneable' novel quantum state of matter". Princeton University. Retrieved 2020-04-20.
  20. "The Aspen Institute". The Aspen Institute. Retrieved 2020-04-24.
  21. "New Members Elected (2020): American Academy of Arts and Sciences". Press Release by the American Academy of Arts & Sciences, Cambridge, Massachusetts, USA. Retrieved 2020-04-23.
  22. "DOE Physicists at Work - Dr. Zahid Hasan". Office of Scientific and Technical Information. Archived from the original on 3 September 2017.
  23. ""New spectroscopy takes aim at an unsolved electronics mystery" by Stanford University". Stanford.edu (Press release). Stanford University News Service. 14 June 2000.
  24. "Miller Research Competitions: Professorship Awards" (PDF). Miller Institute of Basic Research in Science Newsletter. University of California at Berkeley. Winter 2016. p. 5.
  25. "Quantum Twist: Electrons Mimic Presence of Magnetic Field". National Science Foundation. 13 February 2009.
  26. "Summer Reads 2019: What are Princeton professors reading this summer?". Princeton.edu (Press release). Princeton University. July 2019.
  27. "M. Zahid Hasan - Google Scholar Citations". scholar.google.com. Retrieved 2020-04-20.
  28. "Sir Nevill Mott (Nobel Laureate '77) lecture series". lboro.ac.uk (Press release). 2017.
  29. "Bose seminar held at Dhaka University". geebd.com (Press release). 2015.
  30. "New Topological States of Matter: Platform for emergent Dirac, Majorana and Weyl fermions | UC Berkeley Physics". physics.berkeley.edu. Retrieved 2020-04-28.
  31. Einstein, Albert (1905). "Annalen der Physik. Band 27". Annalen der Physik. 17 (12): 970–973. doi:10.1002/andp.200890005. ISSN 0003-3804.
  32. "A quantum magnet with a topological twist". phys.org. Retrieved 2020-04-19.
  33. "Topological Insulators : Observation of Quantum Hall-like Effects without Magnetic Field". Physics Research Conference, California Institute of Technology (Caltech), November 2009.
  34. "Topological Surface States : Discovery and Recent Results". Cornell University physics colloquia 2013.
  35. "300+ publications by M. Zahid Hasan". researchgate.net.
  36. "New Topological Phases of Matter: Platform for emergent Dirac, Majorana and Weyl fermions". University of Central Florida.
  37. "Scientific Publications by M. Zahid Hasan". Google Scholar.
  38. Hasan, M. Zahid; Xu, Su-Yang; Neupane, M (2015). "Topological Insulators, Topological Dirac semimetals, Topological Crystalline Insulators, and Topological Kondo Insulators". Book Chapter in "Topological Insulators" Edited by F. Ortmann, S. Roche and S. O. Valenzuela (John Wiley & Sons): 55–100. doi:10.1002/9783527681594.ch4. ISBN 9783527681594.
  39. Markiewicz, R. S.; Hasan, M. Z.; Bansil, A. (2008-03-25). "Acoustic plasmons and doping evolution of Mott physics in resonant inelastic x-ray scattering from cuprate superconductors". Physical Review B. 77 (9): 094518. Bibcode:2008PhRvB..77i4518M. doi:10.1103/PhysRevB.77.094518.
  40. Hasan, M. Z.; Chuang, Y.-D.; Qian, D.; Li, Y. W.; Kong, Y.; Kuprin, A.; Fedorov, A. V.; Kimmerling, R.; Rotenberg, E.; Rossnagel, K.; Hussain, Z. (2004-06-18). "Fermi Surface and Quasiparticle Dynamics of Na 0.7 CoO 2 Investigated by Angle-Resolved Photoemission Spectroscopy". Physical Review Letters. 92 (24): 246402. arXiv:cond-mat/0308438. Bibcode:2004PhRvL..92x6402H. doi:10.1103/PhysRevLett.92.246402. ISSN 0031-9007. PMID 15245114.
  41. Hasan, M.Z.; Qian, D.; Foo, M.L.; Cava, R.J. (2006). "Are cobaltates conventional? An ARPES viewpoint". Annals of Physics. 321 (7): 1568–1574. arXiv:cond-mat/0501530. Bibcode:2006AnPhy.321.1568H. doi:10.1016/j.aop.2006.03.008.
  42. Zhang, Songtian S.; Yin, Jia-Xin; Dai, Guangyang; Zheng, Hao; Chang, Guoqing; Belopolski, Ilya; Wang, Xiancheng; Lin, Hsin; Wang, Ziqiang; Jin, Changqing; Hasan, M. Zahid (2019-04-04). "Vector field controlled vortex lattice symmetry in LiFeAs using scanning tunneling microscopy". Physical Review B. 99 (16): 161103. arXiv:1802.10059. Bibcode:2019PhRvB..99p1103Z. doi:10.1103/PhysRevB.99.161103. ISSN 2469-9950.
  43. Neupane, Madhab; Alidoust, Nasser; Belopolski, Ilya; Bian, Guang; Xu, Su-Yang; Kim, Dae-Jeong; Shibayev, Pavel P.; Sanchez, Daniel S.; Zheng, Hao; Chang, Tay-Rong; Jeng, Horng-Tay (2015-09-18). "Fermi surface topology and hot spot distribution in the Kondo lattice system CeB 6". Physical Review B. 92 (10): 104420. arXiv:1411.0302. Bibcode:2015PhRvB..92j4420N. doi:10.1103/PhysRevB.92.104420. ISSN 1098-0121.
  44. Neupane, M.; Alidoust, N.; Xu, S-Y.; Kondo, T.; Ishida, Y.; Kim, D. J.; Liu, Chang; Belopolski, I.; Jo, Y. J.; Chang, T-R.; Jeng, H-T. (2013). "Surface electronic structure of the topological Kondo-insulator candidate correlated electron system SmB6". Nature Communications. 4 (1): 2991. arXiv:1312.1979. Bibcode:2013NatCo...4.2991N. doi:10.1038/ncomms3991. ISSN 2041-1723. PMID 24346502.
  45. Hasan, M. Z.; Montano, P. A.; Isaacs, E. D.; Shen, Z.-X.; Eisaki, H.; Sinha, S. K.; Islam, Z.; Motoyama, N.; Uchida, S. (2002-04-16). "Momentum-Resolved Charge Excitations in a Prototype One-Dimensional Mott Insulator". Physical Review Letters. 88 (17): 177403. arXiv:cond-mat/0102485. Bibcode:2002PhRvL..88q7403H. doi:10.1103/PhysRevLett.88.177403. ISSN 0031-9007. PMID 12005784.
  46. Hasan, M. Z.; Chuang, Y.-D.; Li, Y.; Montano, P.; Beno, M.; Hussain, Z.; Eisaki, H.; Uchida, S.; Gog, T.; Casa, D. M. (2003-08-10). "Direct Spectroscopic Evidence of Holons in a Quantum Antiferromagnetic Spin-1/2 Chain". International Journal of Modern Physics B. 17 (18n20): 3479–3483. Bibcode:2003IJMPB..17.3479H. doi:10.1142/S0217979203021241. ISSN 0217-9792.
  47. Xu, Su-Yang; Alidoust, Nasser; Belopolski, Ilya; Richardella, Anthony; Liu, Chang; Neupane, Madhab; Bian, Guang; Huang, Song-Hsun; Sankar, Raman; Fang, Chen; Dellabetta, Brian (2014). "Momentum-space imaging of Cooper pairing in a half-Dirac-gas topological superconductor". Nature Physics. 10 (12): 943–950. arXiv:1410.5405. Bibcode:2014NatPh..10..943X. doi:10.1038/nphys3139. ISSN 1745-2473.
  48. "Scientists discover surprising quantum effect in an exotic superconductor". phys.org (Press release). PHYS.ORG. 22 November 2019.
  49. Yin, Jia-Xin; Zhang, Songtian S.; Dai, Guangyang; Zhao, Yuanyuan; Kreisel, Andreas; Macam, Gennevieve; Wu, Xianxin; Miao, Hu; Huang, Zhi-Quan; Martiny, Johannes H. J.; Andersen, Brian M. (2019-11-20). "Quantum Phase Transition of Correlated Iron-Based Superconductivity in LiFe 1 − x Co x As". Physical Review Letters. 123 (21): 217004. arXiv:1910.11396. Bibcode:2019PhRvL.123u7004Y. doi:10.1103/PhysRevLett.123.217004. ISSN 0031-9007. PMID 31809171.
  50. "Spectroscopy takes aim at an unsolved electronics mystery: 6/00". news.stanford.edu. Retrieved 2020-04-19.
  51. Qian, D.; Wray, L.; Hsieh, D.; Wu, D.; Luo, J. L.; Wang, N. L.; Kuprin, A.; Fedorov, A.; Cava, R. J.; Viciu, L.; Hasan, M. Z. (2006-02-02). "Quasiparticle Dynamics in the Vicinity of Metal-Insulator Phase Transition in Na x CoO 2". Physical Review Letters. 96 (4): 046407. arXiv:cond-mat/0605352. Bibcode:2006PhRvL..96d6407Q. doi:10.1103/PhysRevLett.96.046407. ISSN 0031-9007. PMID 16486860.
  52. Day, C (2009-03-31). ""Search and Discovery" News in Physics Today : Exotic spin textures show up in diverse materials". Physics Today. 62 (4): 12–13. doi:10.1063/1.3120883. ISSN 0031-9228.
  53. "Magnetic monopoles found lurking in topological chiral crystals". Physics World. 2019-04-02. Retrieved 2020-04-20.
  54. Xu, Su-Yang; Neupane, Madhab; Liu, Chang; Zhang, Duming; Richardella, Anthony; Andrew Wray, L.; Alidoust, Nasser; Leandersson, Mats; Balasubramanian, Thiagarajan; Sánchez-Barriga, Jaime; Rader, Oliver (2012). "Hedgehog spin texture and Berry's phase tuning in a magnetic topological insulator". Nature Physics. 8 (8): 616–622. arXiv:1212.3382. Bibcode:2012NatPh...8..616X. doi:10.1038/nphys2351. ISSN 1745-2473.
  55. Qian, D.; Hsieh, D.; Wray, L.; Morosan, E.; Wang, N. L.; Xia, Y.; Cava, R. J.; Hasan, M. Z. (2007-03-16). "Emergence of Fermi Pockets in a New Excitonic Charge-Density-Wave Melted Superconductor". Physical Review Letters. 98 (11): 117007. arXiv:cond-mat/0611657. Bibcode:2007PhRvL..98k7007Q. doi:10.1103/PhysRevLett.98.117007. ISSN 0031-9007. PMID 17501082.
  56. "Scientists discover surprising quantum effect in an exotic superconductor". discovery.princeton.edu (Press release). Princeton University. 22 November 2019.
  57. ""Discovery of Topological Magnets via Spectroscopy: 2D and 3D Novel Weyl-Dirac materials - Theory and Experiments" (4 March 2019)". aps.org. Proceedings of 2019 March Meeting, American Physical Society. 64 (2).
  58. "Time reversal symmetry breaks in ferromagnetic Weyl semimetals". Physics World. 23 September 2019.
  59. "What is a topological metal?". Physics World. 2016-10-06. Retrieved 2020-04-20.
  60. "Physicists discover topological behavior of electrons in 3D magnetic material". ScienceDaily. Retrieved 2020-04-18.
  61. "MIT Special Chez Pierre Seminar by M. Z. Hasan "Discovery of Lorentz-invariant and Lorentz-violating emergent Weyl fermions in topological materials" (3 May 2016)" (PDF). Massachusetts Institute of Technology (MIT), Cambridge, MA.
  62. Chiu, Ching-Kai; Bian, Guang; Zheng, Hao; Yin, Jia-Xin; Zhang, Songtian S.; Sanchez, D. S.; Belopolski, I.; Xu, Su-Yang; Zahid Hasan, M. (2018-09-21). "Chiral Majorana fermion modes on the surface of superconducting topological insulators". EPL (Europhysics Letters). 123 (4): 47005. Bibcode:2018EL....12347005C. doi:10.1209/0295-5075/123/47005. ISSN 1286-4854.
  63. Zhang, Songtian S.; Yin, Jia-Xin; Dai, Guangyang; Zhao, Lingxiao; Chang, Tay-Rong; Shumiya, Nana; Jiang, Kun; Zheng, Hao; Bian, Guang; Multer, Daniel; Litskevich, Maksim (2020-03-31). "Field-free platform for Majorana-like zero mode in superconductors with a topological surface state". Physical Review B. 101 (10): 100507. arXiv:1912.11513. Bibcode:2020PhRvB.101j0507Z. doi:10.1103/PhysRevB.101.100507. ISSN 2469-9950.
  64. ""The Best Topological Conductor Yet: Spiraling Crystal Is the Key to Exotic Discovery" by Berkeley Lab". lbl.gov (Press release). Lawrence Berkeley National Laboratory, California. 20 March 2019.
  65. Xu, Su-Yang; Alidoust, Nasser; Chang, Guoqing; Lu, Hong; Singh, Bahadur; Belopolski, Ilya; Sanchez, Daniel S.; Zhang, Xiao; Bian, Guang; Zheng, Hao; Husanu, Marious-Adrian (2017). "Discovery of Lorentz-violating type II Weyl fermions in LaAlGe". Science Advances. 3 (6): e1603266. Bibcode:2017SciA....3E3266X. doi:10.1126/sciadv.1603266. ISSN 2375-2548. PMC 5457030. PMID 28630919.
  66. Belopolski, Ilya; Xu, Su-Yang; Koirala, Nikesh; Liu, Chang; Bian, Guang; Strocov, Vladimir N.; Chang, Guoqing; Neupane, Madhab; Alidoust, Nasser; Sanchez, Daniel; Zheng, Hao (2017). "A novel artificial condensed matter lattice and a new platform for one-dimensional topological phases". Science Advances. 3 (3): e1501692. arXiv:1703.04537. Bibcode:2017SciA....3E1692B. doi:10.1126/sciadv.1501692. ISSN 2375-2548. PMC 5365246. PMID 28378013.
  67. Chang, Guoqing; Xu, Su-Yang; Zhou, Xiaoting; Huang, Shin-Ming; Singh, Bahadur; Wang, Baokai; Belopolski, Ilya; Yin, Jiaxin; Zhang, Songtian; Bansil, Arun; Lin, Hsin (2017-10-13). "Topological Hopf and Chain Link Semimetal States and Their Application to Co 2 Mn G a". Physical Review Letters. 119 (15): 156401. arXiv:1712.00055. Bibcode:2017PhRvL.119o6401C. doi:10.1103/PhysRevLett.119.156401. ISSN 0031-9007. PMID 29077460.
  68. Guguchia, Z.; Verezhak, J. A. T.; Gawryluk, D. J.; Tsirkin, S. S.; Yin, J.-X.; Belopolski, I.; Zhou, H.; Simutis, G.; Zhang, S.-S.; Cochran, T. A.; Chang, G. (2020). "Tunable anomalous Hall conductivity through volume-wise magnetic competition in a topological kagome magnet". Nature Communications. 11 (1): 559. Bibcode:2020NatCo..11..559G. doi:10.1038/s41467-020-14325-w. ISSN 2041-1723. PMC 6987130. PMID 31992705.
  69. "Scientists discover a 'tuneable' novel quantum state of matter". Princeton University. Retrieved 2020-04-18.
  70. Kelez, Nicholas; Chuang, Yi-De; Smith-Baumann, Alexis; Franck, Keith; Duarte, R.; Lanzara, A.; Hasan, M.Z.; Dessau, D.S.; Chiang, T.C.; Shen, Z.-X.; Hussain, Zahid (2007). "Design of an elliptically bent refocus mirror for the MERLIN beamline at the advanced light source". Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 582 (1): 135–137. Bibcode:2007NIMPA.582..135K. doi:10.1016/j.nima.2007.08.092.
  71. "ScienceWatch's Worlds-Most-Influential-Scientific-Minds" (PDF). sciencewatch.com.
  72. "Search hot papers in the field by M. Z. Hasan (Princeton University)". Web of Science (Web of Knowledge).
  73. "Publications in AAAS journals: M. Zahid Hasan". sciencemag.org. 30 October 2014.
  74. "ORCID entry Zahid Hasan".
  75. Hasan, M. Zahid; Xu, Su-Yang; Belopolski, Ilya; Huang, Shin-Ming (31 March 2017). "Discovery of Weyl Fermion Semimetals and Topological Fermi Arc States". Annual Review of Condensed Matter Physics. 8 (1): 289–309. arXiv:1702.07310. Bibcode:2017ARCMP...8..289H. doi:10.1146/annurev-conmatphys-031016-025225.
  76. Hasan, M. Z.; Kane, C. L. (8 November 2010). "Topological insulators". Reviews of Modern Physics. 82 (4): 3045–3067. arXiv:1002.3895. Bibcode:2010RvMP...82.3045H. doi:10.1103/RevModPhys.82.3045.
  77. "What can you do with a Weyl semimetal?". Physics World. 2016-10-19. Retrieved 2020-04-20.
  78. "The Strange Topology That Is Reshaping Physics". Scientific American. 2017. Retrieved 2020-04-19.
  79. "Discovery of Weyl fermion named a 'breakthrough of the year' by Physics World magazine". phys.org (Press release). Princeton University. 11 December 2015.
  80. "Highlights of the Year". Physics. 8. 18 December 2015.
  81. "Benchtop cosmology exploits solid-state systems". Physics World. 2018-11-10. Retrieved 2020-04-19.
  82. ""Weyl semimetals break a different symmetry" by PHYSICS TODAY" (Press release). American Institute of Physics. 21 October 2019. doi:10.1063/PT.6.1.20191021a.
  83. "Method for production and identification of Weyl semimetal". United States Patent # 10214797.
  84. Jia, Shuang; Xu, Su-Yang; Hasan, M. Zahid (25 October 2016). "Weyl semimetals, Fermi arcs and chiral anomaly". Nature Materials. 15 (11): 1140–1144. arXiv:1612.00416. Bibcode:2016NatMa..15.1140J. doi:10.1038/nmat4787. PMID 27777402.
  85. Chang, G.; Xu, S.; Wieder, B.; Sanchez, D.; Huang, S.; Belopolski, I.; Chang, T.; Zhang, S.; Bansil, A.; Lin, H.; Hasan, M. Z. (2017). "Unconventional Chiral Fermions and Large Topological Fermi Arcs in RhSi". Physical Review Letters. 119 (20): 206401. Bibcode:2017PhRvL.119t6401C. doi:10.1103/PhysRevLett.119.206401. PMID 29219365.
  86. "2020 SSRL/SLAC Science Highlights: "Discovery of Topological Weyl Fermion Lines and Drumhead Surface States in a Room Temperature Magnet"". slac.stanford.edu (Press release). SLAC National Accelerator Laboratory, Stanford, California. 29 February 2020.
  87. "Berkeley Lab Scientists, Visiting Scientist Are New Academy (AAAS) Members". Lawrence Berkeley National Laboratory, California. 2020-04-29. Retrieved 2020-04-29.
  88. Coleman, Piers (2015). Introduction to Many-Body Physics. Cambridge Core. doi:10.1017/CBO9781139020916. ISBN 9781139020916. Retrieved 2020-04-18.
  89. Girvin, Steven M.; Yang, Kun (2019-02-28). Modern Condensed Matter Physics. Cambridge University Press. ISBN 978-1-108-57347-4.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.