Attenuated vaccine

An attenuated vaccine is a vaccine created by reducing the virulence of a pathogen, but still keeping it viable (or "live").[1] Attenuation takes an infectious agent and alters it so that it becomes harmless or less virulent. These vaccines contrast to those produced by "killing" the virus (inactivated vaccine).

Examples

Examples of attenuated vaccines include:

Development

Viruses may be attenuated via passage of the virus through a foreign host, such as:

The initial virus population is applied to a foreign host. One or more of these will possess a mutation that enables it to infect the new host. These mutations will spread, as the mutations allow the virus to grow well in the new host; the result is a population that is significantly different from the initial population, and thus will not grow well in the original host when it is re-introduced (hence is "attenuated"). This process is known as "passage" in which the virus becomes so well adapted to the foreign host that it is no longer harmful to the vaccinated subject. This makes it easier for the host's immune system to eliminate the agent and create the immunological memory cells which will likely protect the patient if they are infected with a similar version of the virus in "the wild".

Administration

Live attenuated vaccines are administered via a viral transport media containing the relevant viral particles. The media is injected via hypodermic needle or by inhalation with the method often dependent upon the source phage's virulence factors.

A vaccine works by encouraging the creation of memory B and T cells specific for an antigen associated with the pathogen in question. Accordingly, a vaccine is only effective for as long as the body maintains a population of these cells. Non-Attenuated Vaccines typically require boosters to resubmit the antigen to these memory leukocytes, in a sense, this alerts the body that the pathogen is still a threat and that the population of specific memory leukocytes should be maintained rather than allowing them to die-off. This is much less of a concern for attenuated vaccines because the virus will reproduce, albeit at a severely reduced rate, resulting in constant antigen presence.

Advantages

  • Activates all phases of the immune system (for instance IgA local antibodies are produced)[4]
  • Provides more durable immunity; boosters are required less frequently[5]
  • Low cost [6]
  • Quick immunity
  • Some are easy to transport and administer (for instance OPV for polio can be taken orally, rather than requiring a sterile injection by a trained healthworker, as the inactivated form IPV does)[7]
  • Vaccines have strong beneficial non-specific effects. That is effects which go beyond the specific protective effects against the targeted diseases.[8]

Disadvantages

  • In extremely rare cases, natural mutations can cause a reversion to virulence.[9] In this case, the virus can revert to wild type or develop into an entirely new strain.
  • Live Vaccines are not usually recommended for immunocompromised patients due to the risk of potentially severe complications.[10]
  • Live strains typically require advanced maintenance, such as refrigeration and fresh media, making transport to remote areas difficult and costly.

References

  1. Badgett MR, Auer A, Carmichael LE, Parrish CR, Bull JJ (October 2002). "Evolutionary dynamics of viral attenuation". J. Virol. 76 (20): 10524–9. doi:10.1128/JVI.76.20.10524-10529.2002. PMC 136581. PMID 12239331.
  2. "Immunization". Archived from the original on 7 March 2009. Retrieved 2009-03-10.
  3. Levine, Myron M.; Ferreccio, Catterine; Black, Robert E.; Lagos, Rosanna; Martin, Oriana San; Blackwelder, William C. (July 15, 2007). "Ty21a Live Oral Typhoid Vaccine and Prevention of Paratyphoid Fever Caused by Salmonella enterica Serovar Paratyphi B". Clinical Infectious Diseases. 45 (Supplement 1): S24–S28. doi:10.1086/518141. ISSN 1058-4838. PMID 17582564.
  4. Pasetti, Marcela F; Simon, Jakub K.; Sztein, Marcelo B.; Levine, Myron M. (9 March 2012). "Immunology of Gut Mucosal Vaccines". Immunological Reviews. 239 (1): 125–148. doi:10.1111/j.1600-065X.2010.00970.x. PMC 3298192. PMID 21198669.
  5. "Vaccine Types | Vaccines.gov". www.vaccines.gov. Retrieved 2019-02-25.
  6. Minor, Philip D. (2015-05-01). "Live attenuated vaccines: Historical successes and current challenges". Virology. 60th Anniversary Issue. 479-480: 379–392. doi:10.1016/j.virol.2015.03.032. ISSN 0042-6822. PMID 25864107.
  7. "Polio and the Introduction of IPV for health workers (September 2014)" (PDF). WHO.int. World Health Organization. 1 September 2014. Archived from the original (PDF) on 20 July 2016. Retrieved 20 July 2016.
  8. Benn, Christine S.; Netea, Mihai G.; Selin, Liisa K.; Aaby, Peter (September 2013). "A small jab – a big effect: nonspecific immunomodulation by vaccines". Trends in Immunology. 34 (9): 431–439. doi:10.1016/j.it.2013.04.004. PMID 23680130.
  9. Shimizu H, Thorley B, Paladin FJ, et al. (December 2004). "Circulation of type 1 vaccine-derived poliovirus in the Philippines in 2001". J. Virol. 78 (24): 13512–21. doi:10.1128/JVI.78.24.13512-13521.2004. PMC 533948. PMID 15564462.
  10. Kroger, Andrew T.; Ciro V. Sumaya; Larry K. Pickering; William L. Atkinson (2011-01-28). "General Recommendations on Immunization: Recommendations of the Advisory Committee on Immunization Practices (ACIP)". Morbidity and Mortality Weekly Report (MMWR). Centers for Disease Control and Prevention. Retrieved 2011-03-11.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.