Strouhal number

In dimensional analysis, the Strouhal number (St) is a dimensionless number describing oscillating flow mechanisms. The parameter is named after Vincenc Strouhal, a Czech physicist who experimented in 1878 with wires experiencing vortex shedding and singing in the wind.[1][2] The Strouhal number is an integral part of the fundamentals of fluid mechanics.

The Strouhal number is often given as;

where f is the frequency of vortex shedding, L is the characteristic length (for example hydraulic diameter, or the airfoil thickness) and U is the flow velocity. In certain cases like heaving (plunging) flight, this characteristic length is the amplitude of oscillation. This selection of characteristic length can be used to present a distinction between Strouhal number and Reduced Frequency.

where k is the reduced frequency and a is amplitude of the heaving oscillation.

Strouhal number as a function of the Reynolds number for a long circular cylinder

For large Strouhal numbers (order of 1), viscosity dominates fluid flow, resulting in a collective oscillating movement of the fluid "plug". For low Strouhal numbers (order of 10−4 and below), the high-speed, quasi steady state portion of the movement dominates the oscillation. Oscillation at intermediate Strouhal numbers is characterized by the buildup and rapidly subsequent shedding of vortices.[3]

For spheres in uniform flow in the Reynolds number range of 8x102 < Re < 2x105 there co-exist two values of the Strouhal number. The lower frequency is attributed to the large-scale instability of the wake and is independent of the Reynolds number Re and is approximately equal to 0.2. The higher frequency Strouhal number is caused by small-scale instabilities from the separation of the shear layer.[4][5]

Applications

Metrology

In metrology, specifically axial-flow turbine meters, the Strouhal number is used in combination with the Roshko number to give a correlation between flow rate and frequency. The advantage of this method over the freq/viscosity versus K-factor method is that it takes into account temperature effects on the meter.

f = meter frequency, U = flow rate, C = linear coefficient of expansion for the meter housing material

This relationship leaves Strouhal dimensionless, although a dimensionless approximation is often used for C3, resulting in units of pulses/volume (same as K-factor).

Animal Locomotion

In swimming or flying animals, Strouhal number is defined as

f = oscillation frequency (tail-beat, wing-flapping, etc.), U = flow rate, A = peak-to-peak oscillation amplitude

In animal flight or swimming, propulsive efficiency is high over a narrow range of Strouhal constants, generally peaking in the 0.2 < St < 0.4 range.[6] This range is used in the swimming of dolphins, sharks, and bony fish, and in the cruising flight of birds, bats and insects.[6] However, in other forms of flight other values are found.[6] Intuitively the ratio measures the steepness of the strokes, viewed from the side (e.g., assuming movement through a stationary fluid) – f is the stroke frequency, A is the amplitude, so the numerator fA is half the vertical speed of the wing tip, while the denominator V is the horizontal speed. Thus the graph of the wing tip forms an approximate sinusoid with aspect (maximum slope) twice the Strouhal constant.[7]

See also

References

  1. Strouhal, V. (1878) "Ueber eine besondere Art der Tonerregung" (On an unusual sort of sound excitation), Annalen der Physik und Chemie, 3rd series, 5 (10) : 216–251.
  2. White, Frank M. (1999). Fluid Mechanics (4th ed.). McGraw Hill. ISBN 978-0-07-116848-9.
  3. Sobey, Ian J. (1982). "Oscillatory flows at intermediate Strouhal number in asymmetry channels". Journal of Fluid Mechanics. 125: 359–373. Bibcode:1982JFM...125..359S. doi:10.1017/S0022112082003371.
  4. Kim, K. J.; Durbin, P. A. (1988). "Observations of the frequencies in a sphere wake and drag increase by acoustic excitation". Physics of Fluids. 31 (11): 3260–3265. Bibcode:1988PhFl...31.3260K. doi:10.1063/1.866937.
  5. Sakamoto, H.; Haniu, H. (1990). "A study on vortex shedding from spheres in uniform flow". Journal of Fluids Engineering. 112 (December): 386–392. Bibcode:1990ATJFE.112..386S. doi:10.1115/1.2909415.
  6. 1 2 3 (Taylor, Nudds & Thomas 2003)
  7. See illustrations at (Corum 2003)

  • Taylor, Graham K.; Nudds, Robert L.; Thomas, Adrian L. R. (2003). "Flying and swimming animals cruise at a Strouhal number tuned for high power efficiency". Nature. 425 (6959): 707–711. Bibcode:2003Natur.425..707T. doi:10.1038/nature02000. PMID 14562101.
  • Corum, Jonathan (2003). "The Strouhal Number in Cruising Flight". 13pt,. Retrieved 2012-11-13– depiction of Strouhal number for flying and swimming animals External link in |website= (help)
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.