Stopwatch

Sped-up stopwatch animation for 59 seconds and its reading.
Digital stopwatch

A stopwatch is a handheld timepiece designed to measure the amount of time elapsed from a particular time - when it is activated - to the time when it is deactivated. A large digital version of a stopwatch designed for viewing at a distance, as in a sports stadium, is called a stopclock. In manual timing, the clock is started and stopped by a person pressing a button. In fully automatic time, both starting and stopping are triggered automatically, by sensors.

A typical mechanical analog stopwatch.

The timing functions are traditionally controlled by two buttons on the case. Pressing the top button starts the timer running, and pressing the button a second time stops it, leaving the elapsed time displayed. A press of the second button then resets the stopwatch to zero. The second button is also used to record split times or lap times. When the split time button is pressed while the watch is running, the display freezes then starts then freezes again, allowing the elapsed time to that point to be read, but the watch mechanism continues running to record total elapsed time. Pressing the split button a second time allows the watch to resume display of total time.

Stopwatch function in Casio wristwatch.
Stopwatch mode can be found in almost all cell phones nowadays.

Mechanical stopwatches are powered by a mainspring, which must be periodically wound up by turning the knurled knob at the top of the watch.

Digital electronic stopwatches are available which, due to their crystal oscillator timing element, are much more accurate than mechanical timepieces. Because they contain a microchip, they often include date and time-of-day functions as well. Some may have a connector for external sensors, allowing the stopwatch to be triggered by external events, thus measuring elapsed time far more accurately than is possible by pressing the buttons with one's finger. Stopwatches that count by 1/100 of a second are commonly mistaken as counting milliseconds, rather than centiseconds. The first digital timer used in organized sports was the Digitimer, developed by Cox Electronic Systems, Inc. of Salt Lake City Utah (1971).[1] It utilized a Nixie-tube readout and provided a resolution of 1/1000 second. Its first use was in ski racing but was later used by the World University Games in Moscow, Russia, the U.S. NCAA, and in the Olympic trials.

The device is used when time periods must be measured precisely and with a minimum of complications. Laboratory experiments and sporting events like sprints are good examples.

The stopwatch function is also present as an additional function of many electronic devices such as wristwatches, cell phones, portable music players, and computers.

Human error on using stopwatch

Even though stopwatches are created to be more accurate, humans are still prone to make mistakes every time they use one. Normally, humans will take about 180–200 milliseconds to detect and respond to visual stimulus.[2] Therefore, most of the measurement errors happen for that reason. To get more accurate results, most researchers use the propagation of uncertainty equation in order to reduce any error in experiments.[3]

  • is the sum of the uncertainty between and
  • is the value which is actually found from the experiment.
  • is the value of the uncertainty.

For example: If the result from measuring the width of a window is 1.50 ± 0.05 m, 1.50 will be and 0.05 will be .

Unit

In most science experiments, researchers will normally use SI or the International System of Units on any of their experiments. For stopwatches, the units of time that are generally used when observing a stopwatch are minutes, seconds, and 'one hundredth of a second'.[4]

See also

References

  1. "The History of the Digital Watch". h2g2 The Hitchhiker's Guide to the Galaxy: Earth Edition. Retrieved 28 Oct 2017.
  2. Jain, Aditya; Bansal, Ramta; Kumar, Avnish; Singh, KD (2015). "A comparative study of visual and auditory reaction times on the basis of gender and physical activity levels of medical first year students". International Journal of Applied and Basic Medical Research. 5 (2): 124. doi:10.4103/2229-516X.157168.
  3. "A Summary of Error Propagation" (PDF). Harvard University. Retrieved 10 October 2017.
  4. Gust, Jeff C.; Graham, Robert M.; Lombardi, Michael A. (January 2009). "Stopwatch and Timer Calibrations (2009 edition)" (PDF). Retrieved 10 October 2017.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.