Particular values of the gamma function

The gamma function is an important special function in mathematics. Its particular values can be expressed in closed form for integer and half-integer arguments, but no simple expressions are known for the values at rational points in general. Other fractional arguments can be approximated through efficient infinite products, infinite series, and recurrence relations.

Integers and half-integers

For positive integer arguments, the gamma function coincides with the factorial. That is,

and hence

and so on. For non-positive integers, the gamma function is not defined.

For positive half-integers, the function values are given exactly by

or equivalently, for non-negative integer values of n:

where n!! denotes the double factorial. In particular,

A002161
A019704
A245884
A245885

and by means of the reflection formula,

A019707
A245886
A245887

General rational argument

In analogy with the half-integer formula,

where n!(p) denotes the pth multifactorial of n. Numerically,

A073005
A068466
A175380
A175379
A220086
A203142.

It is unknown whether these constants are transcendental in general, but Γ(1/3) and Γ(1/4) were shown to be transcendental by G. V. Chudnovsky. Γ(1/4) / 4π has also long been known to be transcendental, and Yuri Nesterenko proved in 1996 that Γ(1/4), π, and eπ are algebraically independent.

The number Γ(1/4) is related to the lemniscate constant S by

and it has been conjectured by Gramain that

where δ is the Masser–Gramain constant A086058, although numerical work by Melquiond et al. indicates that this conjecture is false.[1]

Borwein and Zucker have found that Γ(n/24) can be expressed algebraically in terms of π, K(k(1)), K(k(2)), K(k(3)), and K(k(6)) where K(k(N)) is a complete elliptic integral of the first kind. This permits efficiently approximating the gamma function of rational arguments to high precision using quadratically convergent arithmetic–geometric mean iterations. No similar relations are known for Γ(1/5) or other denominators.

In particular, where AGM() is the arithmetic–geometric mean, we have[2]

Other formulas include the infinite products

and

where A is the Glaisher–Kinkelin constant and G is Catalan's constant.

C. H. Brown derived rapidly converging infinite series for particular values of the gamma function:[3]

where,

equivalently,

The following two representations for Γ(3/4) were given by I. Mező[4]

and

where ϑ1 and ϑ4 are two of the Jacobi theta functions.

Products

Some product identities include:

A186706
A220610

In general:

From those products can be deduced other values, for example, from the former equations for , and , can be deduced:

Other rational relations include

[5]

and many more relations for Γ(n/d) where the denominator d divides 24 or 60.[6]

Imaginary and complex arguments

The gamma function at the imaginary unit i = −1 gives A212877, A212878:

It may also be given in terms of the Barnes G-function:

Curiously enough, appears in the below integral evaluation:[7]

Here denotes the fractional part.

The gamma function with other complex arguments returns

Other constants

The gamma function has a local minimum on the positive real axis

A030169

with the value

A030171.

Integrating the reciprocal gamma function along the positive real axis also gives the Fransén–Robinson constant.

On the negative real axis, the first local maxima and minima (zeros of the digamma function) are:

Approximate local extrema of Γ(x)
xΓ(x)OEIS
−0.5040830082644554092582693045−3.5446436111550050891219639933A175472
−1.57349847316239045877828604372.3024072583396801358235820396A175473
−2.6107208684441446500015377157−0.8881363584012419200955280294A175474
−3.63529336643690109783918156690.2451275398343662504382300889A256681
−4.6532377617431424417145981511−0.0527796395873194007604835708A256682
−5.66716244155688553584947417450.0093245944826148505217119238A256683
−6.6784182130734267428298558886−0.0013973966089497673013074887A256684
−7.68778832503162603744009889180.0001818784449094041881014174A256685
−8.6957641638164012664887761608−0.0000209252904465266687536973A256686
−9.70267254000186373608442676490.0000021574161045228505405031A256687

See also

References

  1. Melquiond, Guillaume; Nowak, W. Georg; Zimmermann, Paul (2013). "Numerical approximation of the Masser–Gramain constant to four decimal places". Math. Comp. 82: 1235–1246. doi:10.1090/S0025-5718-2012-02635-4.
  2. "Archived copy". Archived from the original on 2016-02-14. Retrieved 2015-03-09.
  3. Cetin Hakimgolu-Brown : iamned.com math page Archived October 9, 2016, at the Wayback Machine.
  4. Mező, István (2013), "Duplication formulae involving Jacobi theta functions and Gosper's q-trigonometric functions", Proceedings of the American Mathematical Society, 141 (7): 2401–2410, doi:10.1090/s0002-9939-2013-11576-5
  5. Weisstein, Eric W. "Gamma Function". MathWorld.
  6. Raimundas Vidūnas, Expressions for Values of the Gamma Function
  7. The webpage of István Mező
  • Gramain, F. (1981). "Sur le théorème de Fukagawa-Gel'fond". Invent. Math. 63 (3): 495&ndash, 506. Bibcode:1981InMat..63..495G. doi:10.1007/BF01389066.
  • Borwein, J. M.; Zucker, I. J. (1992). "Fast Evaluation of the Gamma Function for Small Rational Fractions Using Complete Elliptic Integrals of the First Kind". IMA J. Numerical Analysis. 12 (4): 519&ndash, 526. doi:10.1093/imanum/12.4.519. MR 1186733.
  • X. Gourdon & P. Sebah. Introduction to the Gamma Function
  • S. Finch. Euler Gamma Function Constants
  • Weisstein, Eric W. "Gamma Function". MathWorld.
  • Vidunas, Raimundas. "Expressions for values of the gamma function". Kyushu Journal of Mathematics. 59: 267–283. arXiv:math.CA/0403510. doi:10.2206/kyushujm.59.267.
  • Vidunas, Raimundas (2005). "Expressions for values of the gamma function". Kyushu J. Math. 59 (2): 267–283. arXiv:math/0403510. doi:10.2206/kyushujm.59.267. MR 2188592.
  • Adamchik, V. S. (2005). "Multiple Gamma Function and Its Application to Computation of Series" (PDF). The Ramanujan Journal. 9 (3): 271&ndash, 288. arXiv:math/0308074. doi:10.1007/s11139-005-1868-3. MR 2173489.
  • Duke, W.; Imamoglu, Ö. (2006). "Special values of multiple gamma functions" (PDF). J. Theor. Nombres Bordeaux. 18 (1): 113&ndash, 123. doi:10.5802/jtnb.536. MR 2245878.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.