PIGB

PIGB
Identifiers
AliasesPIGB, GPI-MT-III, PIG-B, phosphatidylinositol glycan anchor biosynthesis class B
External IDsMGI: 1891825 HomoloGene: 3570 GeneCards: PIGB
Gene location (Human)
Chr.Chromosome 15 (human)[1]
Band15q21.3Start55,318,960 bp[1]
End55,355,648 bp[1]
RNA expression pattern
More reference expression data
Orthologs
SpeciesHumanMouse
Entrez

9488

55981

Ensembl

ENSG00000069943

ENSMUSG00000079469

UniProt

Q92521

Q9JJQ0

RefSeq (mRNA)

NM_004855

NM_018889

RefSeq (protein)

NP_004846

NP_061377

Location (UCSC)Chr 15: 55.32 – 55.36 MbChr 9: 73.01 – 73.04 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

GPI mannosyltransferase 3 is an enzyme that in humans is encoded by the PIGB gene.[5][6]

This gene encodes a transmembrane protein that is located in the endoplasmic reticulum and is involved in GPI-anchor biosynthesis. The glycosylphosphatidylinositol (GPI) anchor is a glycolipid found on many blood cells and serves to anchor proteins to the cell surface. This gene is thought to encode a member of a family of dolichol-phosphate-mannose (Dol-P-Man) dependent mannosyltransferases.[6]

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000069943 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000079469 - Ensembl, May 2017
  3. "Human PubMed Reference:".
  4. "Mouse PubMed Reference:".
  5. Takahashi M, Inoue N, Ohishi K, Maeda Y, Nakamura N, Endo Y, Fujita T, Takeda J, Kinoshita T (Dec 1996). "PIG-B, a membrane protein of the endoplasmic reticulum with a large lumenal domain, is involved in transferring the third mannose of the GPI anchor". EMBO J. 15 (16): 4254–61. PMC 452151. PMID 8861954.
  6. 1 2 "Entrez Gene: PIGB phosphatidylinositol glycan anchor biosynthesis, class B".

Further reading

  • Mohney RP, Knez JJ, Ravi L, et al. (1994). "Glycoinositol phospholipid anchor-defective K562 mutants with biochemical lesions distinct from those in Thy-1- murine lymphoma mutants". J. Biol. Chem. 269 (9): 6536–42. PMID 7907094.
  • Maruyama K, Sugano S (1994). "Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides". Gene. 138 (1–2): 171–4. doi:10.1016/0378-1119(94)90802-8. PMID 8125298.
  • Suzuki Y, Yoshitomo-Nakagawa K, Maruyama K, et al. (1997). "Construction and characterization of a full length-enriched and a 5'-end-enriched cDNA library". Gene. 200 (1–2): 149–56. doi:10.1016/S0378-1119(97)00411-3. PMID 9373149.
  • Anikster Y, Huizing M, Anderson PD, et al. (2002). "Evidence that Griscelli syndrome with neurological involvement is caused by mutations in RAB27A, not MYO5A". Am. J. Hum. Genet. 71 (2): 407–14. doi:10.1086/341606. PMC 379173. PMID 12058346.
  • Strausberg RL, Feingold EA, Grouse LH, et al. (2003). "Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences". Proc. Natl. Acad. Sci. U.S.A. 99 (26): 16899–903. doi:10.1073/pnas.242603899. PMC 139241. PMID 12477932.
  • Ota T, Suzuki Y, Nishikawa T, et al. (2004). "Complete sequencing and characterization of 21,243 full-length human cDNAs". Nat. Genet. 36 (1): 40–5. doi:10.1038/ng1285. PMID 14702039.
  • Gerhard DS, Wagner L, Feingold EA, et al. (2004). "The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC)". Genome Res. 14 (10B): 2121–7. doi:10.1101/gr.2596504. PMC 528928. PMID 15489334.
  • Kimura K, Wakamatsu A, Suzuki Y, et al. (2006). "Diversification of transcriptional modulation: large-scale identification and characterization of putative alternative promoters of human genes". Genome Res. 16 (1): 55–65. doi:10.1101/gr.4039406. PMC 1356129. PMID 16344560.


This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.