Mucilage

A sundew with a leaf bent around a fly trapped by mucilage.

Mucilage is a thick, gluey substance produced by nearly all plants and some microorganisms. These microorganisms include protists which use it for their locomotion. Their movement is always opposite to the secretion of mucilage[1]. It is a polar glycoprotein and an exopolysaccharide. Mucilage in plants plays a role in the storage of water and food, seed germination, and thickening membranes. Cacti (and other succulents) and flax seeds especially are rich sources of mucilage[2].

Occurrence

Exopolysaccharides are the most stabilising factor for microaggregates and are widely distributed in soils. Therefore, exopolysaccharide-producing "soil algae" play a vital role in the ecology of the world's soils. The substance covers the outside of, for example, unicellular or filamentous green algae and cyanobacteria. Amongst the green algae especially, the group Volvocales are known to produce exopolysaccharides at a certain point in their life cycle. It occurs in almost all plants, but usually in small amounts. It is frequently associated with substances like tannins and alkaloids.[3]

Mucilage has a unique purpose in some carnivorous plants. The plant genera Drosera (sundews), Pinguicula, and others have leaves studded with mucilage-secreting glands, and use a "flypaper trap" to capture insects.[4]

Human uses

Glass container for mucilage, from the first half of the 20th century.

Mucilage is edible. It is used in medicine as it relieves irritation of mucous membranes by forming a protective film. Traditionally, marshmallows were made from the extract of the mucilaginous root of the marshmallow plant (Althaea officinalis) as a cough medicine. The inner bark of the slippery elm (Ulmus rubra), a North American tree species, has long been used as a demulcent and is still produced commercially for that purpose.[5]

Mucilage mixed with water has been used as a glue, especially for bonding paper items such as labels, postage stamps, and envelope flaps.[6] Differing types and varying strengths of mucilage can also be used for other adhesive applications, including gluing labels to metal cans, wood to china, and leather to pasteboard.[7] During the fermentation of nattō soybeans, extracellular enzymes produced by the bacterium Bacillus natto react with soybean sugars to produce mucilage. The amount and viscosity of the mucilage are important nattō characteristics, contributing to nattō's unique taste and smell.

The mucilage of two kinds of insectivorous plants, sundew (Drosera)[8] and butterwort (Pinguicula),[9] is used for the traditional production of a variant of the yoghurt-like Swedish dairy product called filmjölk.[10][11]

Ecological implications for plants

The presence of mucilage in seeds affects important ecological processes in some plant species, such as tolerance of water stress, competition via allelopathy, or facilitation of germination through attachment to soil particles.[12][13][14] Some authors have also suggested a role of seed mucilage in protecting DNA material from irradiation damage.[15] The amount of mucilage produced per seed has been shown to vary across the distribution range of a species, in relation with local environmental conditions of the populations.[16]

Plant sources

The following plants are known to contain far greater concentrations of mucilage than is typically found in most plants:

See also

References

  1. "Modes of Locomotion in Protists: 5 Modes". Biology Discussion. 2016-09-06. Archived from the original on 2017-12-24. Retrieved 2017-10-26.
  2. "Mucilage cell, cactus". www.sbs.utexas.edu. Archived from the original on 2017-06-15. Retrieved 2017-10-26.
  3. Paul, Eldon A., ed. (2006). Soil Microbiology, Ecology and Biochemistry (3rd ed.). Academic Press. p. 33. ISBN 9780080475141. Archived from the original on 2017-12-24.
  4. "Carnivorous Plant Trapping Mechanisms". International Carnivorous Plant Society. Archived from the original on 6 April 2016. Retrieved 29 March 2016.
  5. "Slippery Elm". University of Maryland Medical Center. Archived from the original on 2015-11-17.
  6. Spitzenberger, Ray (August 23, 2007). "Glue, Paste or Mucilage: Know the Difference?". East Bernard Express. East Bernard, TX. Retrieved March 29, 2016.
  7. Dawidowsky, Ferdinand (1905). Glue, Gelatine, Animal Charcoal, Phosphorus, Cements, Pastes, and Mucilage. Henry Carey Baird & co. p. 1. ISBN 978-1-113-00611-0.
  8. Arne Anderberg; Anna-Lena Anderberg (1999-10-13). "Den virtuella floran: Drosera L.: Sileshår" (in Swedish). Naturhistoriska riksmuseet. Archived from the original on 2007-07-04. Retrieved 2007-07-18.
  9. "Filmjölk från Linnés tid" (PDF). Verumjournalen (in Swedish). 2002: 10. 2002. Retrieved 2007-07-18.
  10. Östman, Elisabeth (1911). "Recept på filmjölk, filbunke och långmjölk". Iduns kokbok (in Swedish). Stockholm: Aktiebolaget Ljus, Isaac Marcus' Boktryckeriaktiebolag. p. 161. Archived from the original on 2008-10-29. Retrieved 2007-07-18.
  11. "Vad gjorde man med mjölken?" (in Swedish). Järnriket Gästrikland, Länsmuseet Gävleborg. Archived from the original on 2007-03-22. Retrieved 2007-08-05.
  12. Harper, J. L.; Benton, R. A. (1966-01-01). "The Behaviour of Seeds in Soil: II. The Germination of Seeds on the Surface of a Water Supplying Substrate". Journal of Ecology. 54 (1): 151–166. doi:10.2307/2257664. JSTOR 2257664.
  13. Hasegawa, K.; Mizutani, J.; Kosemura, S.; Yamamura, S. (1992-10-01). "Isolation and identification of lepidimoide, a new allelopathic substance from mucilage of germinated cress seeds". Plant Physiology. 100 (2): 1059–1061. doi:10.1104/pp.100.2.1059. ISSN 0032-0889. PMC 1075667. PMID 16653018.
  14. Lu, Juanjuan; Tan, Dunyan; Baskin, Jerry M.; Baskin, Carol C. (2010-06-01). "Fruit and seed heteromorphism in the cold desert annual ephemeral Diptychocarpus strictus (Brassicaceae) and possible adaptive significance". Annals of Botany. 105 (6): 999–1014. doi:10.1093/aob/mcq041. ISSN 0305-7364. PMC 2876001. PMID 20348559. Archived from the original on 2017-04-11.
  15. Yang, Xuejun; Zhang, Wenhao; Dong, Ming; Boubriak, Ivan; Huang, Zhenying (2011-09-02). "The Achene Mucilage Hydrated in Desert Dew Assists Seed Cells in Maintaining DNA Integrity: Adaptive Strategy of Desert Plant Artemisia sphaerocephala". PLOS ONE. 6 (9): e24346. Bibcode:2011PLoSO...624346Y. doi:10.1371/journal.pone.0024346. ISSN 1932-6203. PMC 3166310. PMID 21912689. Archived from the original on 2017-11-07.
  16. Villellas, J.; García, M. B. (2013-09-01). "The role of the tolerance–fecundity trade-off in maintaining intraspecific seed trait variation in a widespread dimorphic herb". Plant Biology. 15 (5): 899–909. doi:10.1111/j.1438-8677.2012.00684.x. ISSN 1438-8677. Archived from the original on 2017-04-11.
  • Mucilage McGraw-Hill Encyclopedia of Science and Technology, 5th edition.
  • Mucilage Columbia Encyclopedia, Sixth Edition (2007).
  • Wikisource Chisholm, Hugh, ed. (1911). "Mucilage". Encyclopædia Britannica. 18 (11th ed.). Cambridge University Press. p. 954.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.