Metabolic gene cluster

Metabolic gene clusters are tightly linked sets of mostly non-homologous genes participating in a common, discrete metabolic pathway. Metabolic gene clusters are common features of bacterial[1] and most fungal[2] genomes, and are more rarely found in other[3] organisms. They are most widely known for producing secondary metabolites, which are the source or basis of most pharmaceutical compounds, natural toxins, and chemical communication and chemical warfare between organisms. Metabolic gene clusters are also involved in nutrient acquisition, toxin degradation, antimicrobial resistance, and vitamin biosynthesis.[2]

References

  1. Cimermancic P, Medema MH, Claesen J, Kurita K, Wieland Brown LC, Mavrommatis K, Pati A, Godfrey PA, Koehrsen M, Clardy J, Birren BW, Takano E, Sali A, Linington RG, Fischbach MA (July 2014). "Insights into secondary metabolism from a global analysis of prokaryotic biosynthetic gene clusters". Cell. 158 (2): 412–421. doi:10.1016/j.cell.2014.06.034. PMC 4123684. PMID 25036635.
  2. 1 2 Slot JC (2017). "Fungal Gene Cluster Diversity and Evolution". Advances in Genetics. 100: 141–178. doi:10.1016/bs.adgen.2017.09.005. PMID 29153399.
  3. Wisecaver JH, Borowsky AT, Tzin V, Jander G, Kliebenstein DJ, Rokas A (May 2017). "A Global Coexpression Network Approach for Connecting Genes to Specialized Metabolic Pathways in Plants". The Plant Cell. 29 (5): 944–959. doi:10.1105/tpc.17.00009. PMC 5466033. PMID 28408660.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.