List of NP-complete problems

This is a list of some of the more commonly known problems that are NP-complete when expressed as decision problems. As there are hundreds of such problems known, this list is in no way comprehensive. Many problems of this type can be found in Garey & Johnson (1979).

Graphs and hypergraphs

Graphs occur frequently in everyday applications. Examples include biological or social networks, which contain hundreds, thousands and even billions of nodes in some cases (e.g. Facebook or LinkedIn).

NP-complete special cases include the edge dominating set problem, i.e., the dominating set problem in line graphs. NP-complete variants include the connected dominating set problem and the maximum leaf spanning tree problem.[11]

Mathematical programming

Formal languages and string processing

Games and puzzles

Other

NP-complete special cases include the minimum maximal matching problem,[75] which is essentially equal to the edge dominating set problem (see above).

See also

Notes

  1. Grigoriev & Bodlaender (2007).
  2. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Karp (1972)
  3. Garey & Johnson (1979): SP1
  4. Garey & Johnson (1979): GT18
  5. Garey & Johnson (1979): ND5
  6. Garey & Johnson (1979): ND25, ND27
  7. Garey & Johnson (1979): GT19
  8. Garey & Johnson (1979): GT5
  9. Garey & Johnson (1979): GT3
  10. Garey & Johnson (1979): GT2
  11. Garey & Johnson (1979): ND2
  12. Garey & Johnson (1979): GT40
  13. Garey & Johnson (1979): GT17
  14. Garey & Johnson (1979): ND1
  15. Garey & Johnson (1979): SP2
  16. Garey & Johnson (1979): GT7
  17. Garey & Johnson (1979): GT8
  18. Garey & Johnson (1979): GT52
  19. Garey & Johnson (1979): GT4
  20. Garey & Johnson (1979): GT11, GT12, GT13, GT14, GT15, GT16, ND14
  21. Garey & Johnson (1979): GT34
  22. Garey & Johnson (1979): GT37, GT38, GT39
  23. Garey & Johnson (1979): ND29
  24. Garey & Johnson (1979): GT25, ND16
  25. Garey & Johnson (1979): GT20
  26. Garey & Johnson (1979): GT23
  27. Garey & Johnson (1979): GT59
  28. Garey & Johnson (1979): GT61
  29. Brandes, Ulrik; Delling, Daniel; Gaertler, Marco; Görke, Robert; Hoefer, Martin; Nikoloski, Zoran; Wagner, Dorothea (2006), Maximizing Modularity is hard, arXiv:physics/0608255, Bibcode:2006physics...8255B
  30. 1 2 3 4 Arnborg, Corneil & Proskurowski (1987)
  31. Garey & Johnson (1979): SP5, SP8
  32. Garey & Johnson (1979): SP4
  33. Garey & Johnson (1979): ND3
  34. 1 2 "On the computational complexity of upward and rectilinear planarity testing". Lecture Notes in Computer Science. 894/1995. 1995. pp. 286–297. doi:10.1007/3-540-58950-3_384.
  35. Garey & Johnson (1979): GT1
  36. Garey & Johnson (1979): SP15
  37. Garey & Johnson (1979): SR1
  38. Garey & Johnson (1979): MP9
  39. Garey & Johnson (1979): ND22, ND23
  40. Garey & Johnson (1979): ND24
  41. Garey & Johnson (1979): MP1
  42. Garey & Johnson (1979): SP16
  43. Garey & Johnson (1979): SP12
  44. Garey & Johnson (1979): ND43
  45. Garey & Johnson (1979): SP13
  46. Lanctot, J. Kevin; Li, Ming; Ma, Bin; Wang, Shaojiu; Zhang, Louxin (2003), "Distinguishing string selection problems", Information and Computation, 185 (1): 41–55, doi:10.1016/S0890-5401(03)00057-9, MR 1994748
  47. Garey & Johnson (1979): SR10
  48. Garey & Johnson (1979): SR11
  49. Garey & Johnson (1979): SR8
  50. Garey & Johnson (1979): SR20
  51. Malte Helmert, Complexity results for standard benchmark domains in planning, Artificial Intelligence Journal 143(2):219-262, 2003.
  52. Yato, Takauki (2003). "Complexity and Completeness of Finding Another Solution and its Application to Puzzles". CiteSeerX 10.1.1.103.8380. Missing or empty |url= (help)
  53. "HASHIWOKAKERO Is NP-Complete".
  54. Holzer & Ruepp (2007)
  55. Garey & Johnson (1979): GP15
  56. Kölker, Jonas (2012). "Kurodoko is NP-complete".
  57. Cormode, Graham (2004). The hardness of the lemmings game, or Oh no, more NP-completeness proofs (PDF).
  58. Light Up is NP-Complete
  59. Friedman, Erich (2012-03-27). "Pearl Puzzles are NP-complete".
  60. Kaye (2000)
  61. Allan Scott, Ulrike Stege, Iris van Rooij, Minesweeper may not be NP-complete but is hard nonetheless, The Mathematical Intelligencer 33:4 (2011), pp. 5-17.
  62. Garey & Johnson (1979): GT56
  63. 1 2 Sato, Takayuki; Seta, Takahiro (1987). Complexity and Completeness of Finding Another Solution and Its Application to Puzzles (PDF). International Symposium on Algorithms (SIGAL 1987).
  64. Nukui; Uejima. "ASP-Completeness of the Slither Link Puzzle on Several Grids".
  65. Kölker, Jonas (2012). "Selected Slither Link Variants are NP-complete".
  66. A SURVEY OF NP-COMPLETE PUZZLES, Section 23; Graham Kendall, Andrew Parkes, Kristian Spoerer; March 2008. (icga2008.pdf)
  67. Demaine, Eric D.; Hohenberger, Susan; Liben-Nowell, David (July 25–28, 2003). Tetris is Hard, Even to Approximate (PDF). Proceedings of the 9th International Computing and Combinatorics Conference (COCOON 2003). Big Sky, Montana.
  68. Lim, Andrew (1998), "The berth planning problem", Operations Research Letters, 22 (2–3): 105–110, doi:10.1016/S0167-6377(98)00010-8, MR 1653377
  69. J. Bonneau, "Bitcoin mining is NP-hard
  70. Garey & Johnson (1979): LO1
  71. Garey & Johnson (1979): p. 48
  72. Garey & Johnson (1979): SR31
  73. Garey & Johnson (1979): GT6
  74. Minimum Independent Dominating Set
  75. Garey & Johnson (1979): GT10
  76. Garey & Johnson (1979): GT49
  77. Garey & Johnson (1979): LO5
  78. https://web.archive.org/web/20150203193923/http://www.meliksah.edu.tr/acivril/max-vol-original.pdf
  79. Peter Downey, Benton Leong, and Ravi Sethi. "Computing Sequences with Addition Chains" SIAM J. Comput., 10(3), 638–646, 1981
  80. D. J. Bernstein, "Pippinger's exponentiation algorithm (draft)
  81. Kashiwabara & Fujisawa (1979); Ohtsuki et al. (1979); Lengauer (1981).
  82. Hurkens, C.; Iersel, L. V.; Keijsper, J.; Kelk, S.; Stougie, L.; Tromp, J. (2007). "Prefix reversals on binary and ternary strings". SIAM J. Discrete Math. 21 (3): 592–611. arXiv:math/0602456. doi:10.1137/060664252.
  83. Garey & Johnson (1979): GT48
  84. Garey & Johnson (1979): ND13
  85. Garey & Johnson (1979): SP3
  86. Garey & Johnson (1979): SR33
  87. Bein, W. W.; Larmore, L. L.; Latifi, S.; Sudborough, I. H. (2002-01-01). "Block sorting is hard". International Symposium on Parallel Architectures, Algorithms and Networks, 2002. I-SPAN '02. Proceedings: 307–312. doi:10.1109/ISPAN.2002.1004305. ISBN 0-7695-1579-7.
  88. Barry A. Cipra, "The Ising Model Is NP-Complete", SIAM News, Vol 33, No 6.

References

General

  • Garey, Michael R.; Johnson, David S. (1979), Computers and Intractability: A Guide to the Theory of NP-Completeness, W. H. Freeman, ISBN 0-7167-1045-5 . This book is a classic, developing the theory, then cataloguing many NP-Complete problems.
  • Cook, S.A. (1971). "The complexity of theorem proving procedures". Proceedings, Third Annual ACM Symposium on the Theory of Computing, ACM, New York. pp. 151–158. doi:10.1145/800157.805047.
  • Karp, Richard M. (1972). "Reducibility among combinatorial problems". In Miller, Raymond E.; Thatcher, James W. Complexity of Computer Computations. Plenum. pp. 85–103.
  • Dunne, P.E. "An annotated list of selected NP-complete problems". COMP202, Dept. of Computer Science, University of Liverpool. Retrieved 2008-06-21.
  • Crescenzi, P.; Kann, V.; Halldórsson, M.; Karpinski, M.; Woeginger, G. "A compendium of NP optimization problems". KTH NADA, Stockholm. Retrieved 2008-06-21.
  • Dahlke, K. "NP-complete problems". Math Reference Project. Retrieved 2008-06-21.

Specific problems

  • Friedman, E (2002). "Pearl puzzles are NP-complete". Stetson University, DeLand, Florida. Retrieved 2008-06-21.
  • Grigoriev, A; Bodlaender, H L (2007). "Algorithms for graphs embeddable with few crossings per edge". Algorithmica. 49 (1): 1–11. doi:10.1007/s00453-007-0010-x. MR 2344391.
  • Hartung, S; Nichterlein, A (2012). "NP-Hardness and Fixed-Parameter Tractability of Realizing Degree Sequences with Directed Acyclic Graphs". Springer, Berlin, Heidelberg. Retrieved 2013-01-24.
  • Holzer, Markus; Ruepp, Oliver (2007). "The Troubles of Interior Design–A Complexity Analysis of the Game Heyawake". Proceedings, 4th International Conference on Fun with Algorithms, LNCS 4475. Springer, Berlin/Heidelberg. pp. 198–212. doi:10.1007/978-3-540-72914-3_18. ISBN 978-3-540-72913-6.
  • Kaye, Richard (2000). "Minesweeper is NP-complete". Mathematical Intelligencer. 22 (2): 9–15. doi:10.1007/BF03025367. Further information available online at Richard Kaye's Minesweeper pages.
  • Kashiwabara, T.; Fujisawa, T. (1979). "NP-completeness of the problem of finding a minimum-clique-number interval graph containing a given graph as a subgraph". Proceedings. International Symposium on Circuits and Systems. pp. 657–660.
  • Ohtsuki, Tatsuo; Mori, Hajimu; Kuh, Ernest S.; Kashiwabara, Toshinobu; Fujisawa, Toshio (1979). "One-dimensional logic gate assignment and interval graphs". IEEE Transactions on Circuits and Systems. 26 (9): 675–684. doi:10.1109/TCS.1979.1084695.
  • Lengauer, Thomas (1981). "Black-white pebbles and graph separation". Acta Informatica. 16 (4): 465–475. doi:10.1007/BF00264496.
  • Arnborg, Stefan; Corneil, Derek G.; Proskurowski, Andrzej (1987). "Complexity of finding embeddings in a k-tree". SIAM Journal on Algebraic and Discrete Methods. 8 (2): 277–284. doi:10.1137/0608024.
  • Cormode, Graham (2004). "The hardness of the lemmings game, or Oh no, more NP-completeness proofs". Proceedings of Third International Conference on Fun with Algorithms (FUN 2004). pp. 65–76.

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.