Kruskal–Katona theorem

In algebraic combinatorics, the Kruskal–Katona theorem gives a complete characterization of the f-vectors of abstract simplicial complexes. It includes as a special case the Erdős–Ko–Rado theorem and can be restated in terms of uniform hypergraphs. The theorem is named after Joseph Kruskal and Gyula O. H. Katona. It was independently proved by Marcel-Paul Schützenberger, but his contribution escaped notice for several years.

Statement

Given two positive integers N and i, there is a unique way to expand N as a sum of binomial coefficients as follows:

This expansion can be constructed by applying the greedy algorithm: set ni to be the maximal n such that replace N with the difference, i with i − 1, and repeat until the difference becomes zero. Define

Statement for simplicial complexes

An integral vector is the f-vector of some -dimensional simplicial complex if and only if

Statement for uniform hypergraphs

Let A be a set consisting of N distinct i-element subsets of a fixed set U ("the universe") and B be the set of all -element subsets of the sets in A. Expand N as above. Then the cardinality of B is bounded below as follows:

Lovász' simplified formulation

The following weaker but useful form is due to Lovász.[1] Let A be a set of i-element subsets of a fixed set U ("the universe") and B be the set of all -element subsets of the sets in A. If then .

In this formulation, x need not be an integer. The value of the binomial expression is .

Ingredients of the proof

For every positive i, list all i-element subsets a1 < a2 < … ai of the set N of natural numbers in the colexicographical order. For example, for i = 3, the list begins

Given a vector with positive integer components, let Δf be the subset of the power set 2N consisting of the empty set together with the first i-element subsets of N in the list for i = 1, …, d. Then the following conditions are equivalent:

  1. Vector f is the f-vector of a simplicial complex Δ.
  2. Δf is a simplicial complex.

The difficult implication is 1 ⇒ 2.

See also

References

  1. Lovász, László (1993). Combinatorial problems and exercises. Amsterdam: North-Holland.
  • Kruskal, Joseph B. (1963), "The number of simplices in a complex", in Bellman, Richard E., Mathematical Optimization Techniques, University of California Press .
  • Katona, Gyula O. H. (1968), "A theorem of finite sets", in Erdős, Paul; Katona, Gyula O. H., Theory of Graphs, Akadémiai Kiadó and Academic Press .
  • Knuth, Donald, "pre-fascicle 3a: Generating all combinations", The Art of Computer Programming . Contains a proof via a more general theorem in discrete geometry.
  • Stanley, Richard (1996), Combinatorics and commutative algebra, Progress in Mathematics, 41 (2nd ed.), Boston, MA: Birkhäuser Boston, Inc., ISBN 0-8176-3836-9 .
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.