Health effects from noise

How Loud is Too Loud - Various common noise levels and when noise becomes hazardous to hearing and well-being.
How Loud is Too Loud - Various common noise levels and when noise becomes hazardous to hearing and well-being

Noise health effects are the physical and psychological health consequences of regular exposure, to consistent elevated sound levels. Elevated workplace or environmental noise can cause hearing impairment, hypertension, ischemic heart disease, annoyance, and sleep disturbance.[1][2] Changes in the immune system and birth defects have been also attributed to noise exposure.[3]

Although presbycusis occur naturally with age,[4] in many countries the cumulative impact of noise is sufficient to impair the hearing of a large fraction of the population over the course of a lifetime.[5][6] Noise exposure has been known to induce tinnitus, hypertension, vasoconstriction, and other cardiovascular adverse effects.[7] Chronic noise exposure has been associated with sleep disturbances and increased incidence of diabetes. Adverse cardiovascular effects occur from chronic exposure to noise due to the sympathetic nervous system's inability to habituate. The sympathetic nervous system maintains lighter stages of sleep when the body is exposed to noise, which does not allow blood pressure to follow the normal rise and fall cycle of an undisturbed circadian rhythm.[1]

Stress from time spent around elevated noise levels has been linked with increased workplace accident rates and aggression and other anti-social behaviors.[8] The most significant sources are vehicles, aircraft, prolonged exposure to loud music, and industrial noise.[9]

There are an attributed 10 000 annual deaths as a result of noise in the European Economic Area.[10][11]

Noise induced hearing loss

Noise-induced hearing loss is a permanent shift in pure-tone thresholds, resulting in sensorineural hearing loss. The severity of a threshold shift is dependent on duration and severity of noise exposure. Noise-induced threshold shifts are seen as a notch on an audiogram from 3000–6000 Hz, but most often at 4000 Hz.[12]

Cardiovascular effects

Noise has been associated with important cardiovascular health problems, particularly hypertension.[13][14] Noise levels of 50 dB(A) at night may also increase the risk of myocardial infarction by chronically elevating cortisol production.[15][16][17]

Roadway noise levels are sufficient to constrict arterial blood flow and lead to elevated blood pressure. Vasoconstriction can result from elevated adrenaline levels or through medical stress reactions.

Psychological impacts of noise

Causal relationships have been discovered between noise and psychological effects such as annoyance, psychiatric disorders, and effects on psychosocial well-being.[18] Exposure to intense levels of noise can cause personality changes and violent reactions.[19] Noise has also been shown to be a factor that attributed to violent reactions.[20] The psychological impacts of noise also include an addiction to loud music. This was researched in a study where non-professional musicians were found to have loudness addictions more often than non-musician control subjects.[21]

Psychological health effects from noise include depression and anxiety. Individuals who have hearing loss, including noise induced hearing loss, may have their symptoms alleviated with the use of hearing aids. Individuals who do not seek treatment for their loss are 50% more likely to have depression than their aided peers.[22] These psychological effects can lead to detriments in physical care in the form of reduced self-care, work-tolerance, and increased isolation.[23]

Auditory stimuli can serve as psychological triggers for individuals with post traumatic stress disorder (PTSD).[24]

Stress

Research commissioned by Rockwool, a multi-national insulation manufacturer headquartered in Denmark, reveals that in the UK one third (33%) of victims of domestic disturbances claim loud parties have left them unable to sleep or made them stressed in the last two years. Around one in eleven (9%) [25] of those affected by domestic disturbances claims it has left them continually disturbed and stressed. More than 1.8 million people claim noisy neighbours have made their life a misery and they cannot enjoy their own homes. The impact of noise on health is potentially a significant problem across the UK given that more than 17.5 million Britons (38%) have been disturbed by the inhabitants of neighbouring properties in the last two years. For almost one in ten (7%) Britons this is a regular occurrence.[26]

The extent of the problem of noise pollution for public health is reinforced by figures collated by Rockwool from local authority responses to a Freedom of Information Act (FOI) request. This research reveals in the period April 2008 - 2009 UK councils received 315,838 complaints about noise pollution from private residences. This resulted in environmental health officers across the UK serving 8,069 noise abatement notices, or citations under the terms of the Anti-Social Behaviour (Scotland) Act.[26]

Westminster City Council[27] has received more complaints per head of population than any other district in the UK with 9,814 grievances about noise, which equates to 42.32 complaints per thousand residents. Eight of the top 10 councils ranked by complaints per 1,000 residents are located in London.

Annoyance

Sudden Impulse noises are typically perceived as more bothersome than noise from traffic of equal volume.[28] Annoyance effects of noise are minimally affected by demographics, but fear of the noise source and sensitivity to noise both strongly affect the 'annoyance' of a noise.[29] Sound levels as low as 40 dB(A) can generate noise complaints[30] and the lower threshold for noise producing sleep disturbance is 45 dB(A) or lower.[31]

Other factors that affect the 'annoyance level' of sound include beliefs about noise prevention and the importance of the noise source, and annoyance at the cause (i.e. non-noise related factors) of the noise.[32] Many of the interpretations of the level of annoyance and the relationship between noise levels and resulting health symptoms could be influenced by the quality of interpersonal relationships at the workplace, as well as the stress level generated by the work itself.[3][33] Evidence for impact on annoyance of long-term noise versus recent changes is equivocal.[32]

Approximately 35% to 40% of office workers find noise levels from 55 to 60 dB(A) extremely irritating.[3] The noise standard in Germany for mentally stressful tasks is set at 55 dB(A),[34] however, if the noise source is continuous, the threshold level for tolerability among office workers is lower than 55 dB(A).[3]

Child physical development

The U.S. Environmental Protection Agency authored a pamphlet in 1978 that suggested a correlation between low-birthweight (using the World Health Organization definition of less than 2,500 grams (88 oz) and high sound levels, and also high rates of birth defects in places where expectant mothers are exposed to elevated sound levels, such as typical airport environs. Specific birth abnormalities included harelip, cleft palate, and defects in the spine.[35]

According to Lester W. Sontag of The Fels Research Institute (as presented in the same EPA study): “There is ample evidence that environment has a role in shaping the physique, behavior, and function of animals, including man, from conception and not merely from birth. The fetus is capable of perceiving sounds and responding to them by motor activity and cardiac rate change." The effects of noise exposure are highest when it occurs between 15 and 60 days after conception, a period in which major internal organs and the central nervous system are formed.[35]

Later developmental effects occur as vasoconstriction in the mother reduces blood flow and therefore oxygen and nutrition to the fetus. Low birth weights and noise were also associated with lower levels of certain hormones in the mother. These hormones are thought to affect fetal growth and to be good indicators of protein production. The difference between the hormone levels of pregnant mothers in noisy versus quiet areas increased as birth approached.[35]

In a 2000 publication, a review of studies on birthweight and noise exposure note that while some older studies suggest that when women are exposed to >65 dB aircraft noise a small decrease in birthweight occurs, in a more recent study of 200 Taiwanese women including noise dosimetry measurements of individual noise exposure, the authors found no significant association between noise exposure and birth weight after adjusting for relevant confounders, e.g. social class, maternal weight gain during pregnancy, etc.[3]

Cognitive development

When young children are regularly exposed to levels of noise that interfere with speech, they may develop speech or reading difficulties, because auditory processing functions are compromised. Children continue to develop their speech perception abilities until they reach their teens. Evidence has shown that when children learn in noisier classrooms, they have more difficulties understanding speech than those who learn in quieter settings.[36]

In a study conducted by Cornell University in 1993, children exposed to noise in learning environments experienced trouble with word discrimination, as well as various cognitive developmental delays.[37][38] In particular, the writing learning impairment dysgraphia is commonly associated with environmental stressors in the classroom.[39]

High noise levels have also been known to damage the physical health of small children. Children from noisy residences often have a heart rate that is significantly higher (by 2 beats/min on average) than those of children from quieter homes.[40]

Regulations

Environmental noise regulations usually specify a maximum outdoor noise level of 60 to 65 dB(A), while occupational safety organizations recommend that the maximum exposure to noise is 40 hours per week at 85 to 90 dB(A). For every additional 3 dB(A), the maximum exposure time is reduced by a factor 2, e.g. 20 hours per week at 88 dB(A). Sometimes, a factor of two per additional 5 dB(A) is used, however, these occupational regulations are acknowledged by the health literature as inadequate to protect against hearing loss and other health effects. In an effort to prevent noise-induced hearing loss, many programs and initiative have been created, like the Buy Quiet program, which encourages employers to purchase quieter tools and equipment, and the Safe-In-Sound Award, which recognizes organizations with successful hearing loss prevention strategies.[41][42]

With regard to indoor noise pollution in residences, the U.S. Environmental Protection Agency (EPA) has not set any restrictions on limits to the level of noise. Rather, it has provided a list of recommended levels in its Model Community Noise Control Ordinance, which was published in 1975. For instance, the recommended noise level for indoor residences is less than or equal to 45 dB.[43][44]

Noise pollution control in residences is not funded by the federal government in part because of the disagreements in establishing causal links between sounds and health risks, since the effect of noise is often psychological and also, because it leaves no singular tangible trace of damage on the human body. For instance, hearing loss could be attributed to a variety of factors including age, rather than solely due to excessive exposure to noise.[45][46] A state or local government is able to regulate indoor residential noise, however, such as when excessive noise from within a home causes disturbances to nearby residences.[45][47]

In canines

While people are often educated on the effects of noise exposure in humans, there are also different noise exposure effects in animals as well. An example of this would be in canines, and the noise exposure levels occurring within kennels. Canines experience this noise exposure whether it be a long stay at an animal shelter, or a weekend stay at a boarding facility.

Organizations like NIOSH and OSHA have different regulations when it comes to the noise exposure levels in industrial workers. Currently there are no regulations related to the noise exposure in canines even with such damaging effects related to their health. Health risks dogs are exposed to include ear damage and behavioral changes.

The average noise exposure in a kennel is greater than 100 dB SPL. According to OSHA these levels would yield in the use of hearing protection for the workers of those kennels due to the risk of noise induced hearing loss. The anatomical structures of the human and canine ear are very similar, so it is thought that these levels will negatively impact the hearing of canines in kennels. The ABR can be used to estimate the hearing threshold of canines, and can be used to show either a temporary threshold shift or permanent threshold shift after being exposed to excessive sound levels.[48]

Behavioral effects to excessive noise exposure include hiding, urinating, defecating, panting, pacing, drooling, disregard to commands, trembling, and barking.[49] These behavioral patterns pose a much greater problem to canines than meets the eye. All of these behavioral patterns are characteristics that result in a longer stay at the kennels before being adopted.[50] A longer stay at the shelter results in a longer duration of noise exposure and therefore more likely to show either a temporary or permanent threshold shift in the canine’s hearing.[48]

These excessive noise levels are not only harming the canines' physical and psychological state, but the workers' and potential adoptive families' physical and psychological state as well. The workers' psychological state could affect the care provided to the canines. These loud noise exposures also have the potential to reduce the amount of time that potential adoptive families spend in the facility. This can result in less dogs being adopted and more time being exposed to excessive sound levels.[51]

To reduce the level of noise exposure poses a little more difficulty because the majority of the noise is coming from the canines (barking), but structural changes can be made to the facilities in order to reduce the noise. Structural changes could include how many dogs are put in one area, more absorbing material rather than metal cages and cement walls and floors, and possibly in the future use of hearing protection devices (HPD) for the canines. All of these structural changes would also benefit the humans involved as well as the use of HPD’s (ear plugs).

See also

References

  1. 1 2 Münzel, Thomas; Schmidt, Frank P.; Steven, Sebastian; Herzog, Johannes; Daiber, Andreas; Sørensen, Mette (February 2018). "Environmental Noise and the Cardiovascular System". Journal of the American College of Cardiology. 71 (6): 688–697. doi:10.1016/j.jacc.2017.12.015. ISSN 0735-1097.
  2. Kerns, Ellen; Masterson, Elizabeth A.; Themann, Christa L.; Calvert, Geoffrey M. (2018-03-14). "Cardiovascular conditions, hearing difficulty, and occupational noise exposure within US industries and occupations". American Journal of Industrial Medicine. 61 (6): 477–491. doi:10.1002/ajim.22833. ISSN 0271-3586.
  3. 1 2 3 4 5 Passchier-Vermeer W, Passchier WF (March 2000). "Noise exposure and public health". Environmental Health Perspectives. 108 Suppl 1 (Suppl 1): 123–31. doi:10.2307/3454637. JSTOR 3454637. PMC 1637786. PMID 10698728.
  4. Rosenhall U, Pedersen K, Svanborg A (August 1990). "Presbycusis and noise-induced hearing loss". Ear and Hearing. 11 (4): 257–63. doi:10.1097/00003446-199008000-00002. PMID 2210099.
  5. Schmid RE (2007-02-18). "Aging nation faces growing hearing loss". CBS News. Archived from the original on 2007-11-15. Retrieved 2007-02-18.
  6. Senate Public Works Committee, Noise Pollution and Abatement Act of 1972, S. Rep. No. 1160, 92nd Cong. 2nd session
  7. "Noise: Health Effects and Controls" (PDF). University of California, Berkeley. Archived from the original (PDF) on 2007-09-25. Retrieved 2007-12-22.
  8. Kryter KD (1994). The handbook of hearing and the effects of noise: physiology, psychology, and public health. Boston: Academic Press. ISBN 0-12-427455-2.
  9. "10. Noise" (PDF). Natural Resources and the Environment 2006. 2006. pp. 188–189. Archived from the original (PDF) on November 14, 2011.
  10. https://www.eea.europa.eu/publications/noise-in-europe-2014. Missing or empty |title= (help)
  11. https://www.theguardian.com/lifeandstyle/2018/jul/03/sonic-doom-noise-pollution-kills-heart-disease-diabetes. Missing or empty |title= (help)
  12. Katz J, Chasin M, English KM, Hood LJ, Tillery KL. Handbook of clinical audiology (Seventh ed.). Philadelphia. ISBN 978-1-4511-9163-9. OCLC 877024342.
  13. Ising H, Babisch W, Kruppa B (1999). "Noise-Induced Endocrine Effects and Cardiovascular Risk". Noise & Health. 1 (4): 37–48. PMID 12689488.
  14. Davies, Hugh; Kamp, Irene Van (2012-11-01). "Noise and cardiovascular disease: A review of the literature 2008-2011". Noise and Health. 14 (61).
  15. Maschke C (2003). "Stress Hormone Changes in Persons exposed to Simulated Night Noise". Noise & Health. 5 (17): 35–45. PMID 12537833.
  16. Franssen EA, van Wiechen CM, Nagelkerke NJ, Lebret E (May 2004). "Aircraft noise around a large international airport and its impact on general health and medication use". Occupational and Environmental Medicine. 61 (5): 405–13. doi:10.1136/oem.2002.005488. PMC 1740783. PMID 15090660.
  17. Lercher P, Hörtnagl J, Kofler WW (1993). "Work noise annoyance and blood pressure: combined effects with stressful working conditions". International Archives of Occupational and Environmental Health. 65 (1): 23–8. doi:10.1007/BF00586054. PMID 8354571.
  18. Passchier-Vermeer, Passchier (March 2000). "Noise exposure and public health". Environ. Health Perspect. 108 Suppl 1: 123–31. doi:10.2307/3454637. PMC 1637786. PMID 10698728.
  19. "Children and Noise" (PDF). World Health Organization.
  20. Elizondo-Garza FJ (1999). "Noise problems, savage approaches. From just forget it, to physical violence". The Journal of the Acoustical Society of America. 105 (2): 942–942. doi:10.1121/1.425711.
  21. Schmuziger N, Patscheke J, Stieglitz R, Probst R (January 2012). "Is there addiction to loud music? Findings in a group of non-professional pop/rock musicians". Audiology Research. 2 (1): e11. doi:10.4081/audiores.2012.e11. PMC 4630946. PMID 26557326.
  22. "Silently Suffering From Hearing Loss Negatively Affects Quality of Life". American Psychological Association. Retrieved 2018-03-01.
  23. "Environmental Health Perspectives – Environmental Noise Pollution in the United States: Developing an Effective Public Health Response". National Institute of Environmental Health Sciences. Retrieved 2018-03-01.
  24. Glad KA, Hafstad GS, Jensen TK, Dyb G (August 2017). "A longitudinal study of psychological distress and exposure to trauma reminders after terrorism". Psychological Trauma. 9 (Suppl 1): 145–152. doi:10.1037/tra0000224. PMID 27831737.
  25. "How Noisy Neighbours Blight Millions of Lives". The Daily Express.
  26. 1 2 Clout L. "How noisy neighbours millions of lives". Express.co.uk.
  27. "London is home to the noisiest neighbours". The Evening Standard. Archived from the original on 2013-01-14.
  28. Miedema and Oudshoorn 2001 cited in "Hypertension and exposure to noise near airports". Medscape.
  29. Miedema HM, Vos H (1999). "Demographic and attitudinal factors that modify annoyance from transportation noise". Journal of the Acoustical Society of America. 105 (6): 3336–44. doi:10.1121/1.424662.
  30. Gelfand SA (2001). Essentials of Audiology. New York: Thieme Medical Publishers. ISBN 1-58890-017-7.
  31. Walker JR, Fahy F (1998). Fundamentals of noise and vibration. London: E & FN Spon. ISBN 0-419-22700-8.
  32. 1 2 Field, JM (1993). "Effect of personal and situational variables upon noise annoyance in residential areas". Journal of the Acoustical Society of America. 93 (5): 2753–63. doi:10.1121/1.405851.
  33. Halpern D (1995). Mental health and the built environment: more than bricks and mortar?. Taylor & Francis. ISBN 0-7484-0235-7.
  34. Stellman JM (1998). Encyclopedia of occupational health and safety. International Labour Organization. ISBN 92-2-109203-8.
  35. 1 2 3 Noise: A Health Problem United States Environmental Protection Agency, Office of Noise Abatement and Control, Washington, D.C. 20460, August, 1978
  36. Nelson PB (1959). "Sound in the Classroom". ASHRAE Journal. 45 (2): 22–25.
  37. Evans GW, Lepore SJ (1993). "Nonauditory Effects of Noise on Children: A Critical Review". Children's Environments. 10 (1): 31–51. doi:10.2307/41515250. JSTOR 41515250.
  38. Wakefield J (June 2002). "Learning the Hard Way". Environmental Health Perspectives. 110 (6): a298–a305. doi:10.1289/ehp.110-a298.
  39. "Dysgraphiastaff". Brain.HE. Retrieved 2017-09-09.
  40. Belojevic G, Jakovljevic B, Stojanov V, Paunovic K, Ilic J (February 2008). "Urban road-traffic noise and blood pressure and heart rate in preschool children". Environment International. 34 (2): 226–31. doi:10.1016/j.envint.2007.08.003. PMID 17869340.
  41. "CDC - Buy Quiet - NIOSH Workplace Safety and Health Topics". cdc.gov.
  42. "Safe-in-Sound: Excellence in Hearing Loss Prevention Award". Safe-in-Sound. Retrieved July 12, 2016.
  43. Williams LK, Langley RL (2000). Environmental Health Secrets. Philadelphia: Elsevier Health Sciences. ISBN 1-56053-408-7.
  44. "EPA Identifies Noise Levels Affecting Health and Welfare". April 2, 1972.
  45. 1 2 Schmidt CW (January 2005). "Noise that annoys: regulating unwanted sound". Environmental Health Perspectives. 113 (1): A42–5. doi:10.1289/ehp.113-a42. PMC 1253730. PMID 15631959.
  46. Staples SL (February 1996). "Human response to environmental noise. Psychological research and public policy". The American Psychologist. 51 (2): 143–50. doi:10.1037/0003-066X.51.2.143. PMID 8746149.
  47. Leighton P (April 14, 2009). "Beverly considers rules to quiet loud parties". The Salem News. Archived from the original on July 16, 2012.
  48. 1 2 Scheifele P, Martin D, Clark JG, Kemper D, Wells J (April 2012). "Effect of kennel noise on hearing in dogs". American Journal of Veterinary Research. 73 (4): 482–9. doi:10.2460/ajvr.73.4.482. PMID 22452494.
  49. "Noise Phobia in Dog". Veterinary World. 1.
  50. Protopopova A, Mehrkam LR, Boggess MM, Wynne CD (2014). "In-kennel behavior predicts length of stay in shelter dogs". PLOS One. 9 (12): e114319. doi:10.1371/journal.pone.0114319. PMC 4281133. PMID 25551460.
  51. Coppola CL, Enns RM, Grandin T (2006-01-01). "Noise in the animal shelter environment: building design and the effects of daily noise exposure". Journal of Applied Animal Welfare Science. 9 (1): 1–7. doi:10.1207/s15327604jaws0901_1. PMID 16649947.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.