HIRA

HIRA
Available structures
PDBOrtholog search: PDBe RCSB
Identifiers
AliasesHIRA, DGCR1, TUP1, TUPLE1, histone cell cycle regulator
External IDsMGI: 99430 HomoloGene: 48172 GeneCards: HIRA
Gene location (Human)
Chr.Chromosome 22 (human)[1]
Band22q11.21Start19,330,698 bp[1]
End19,447,450 bp[1]
RNA expression pattern
More reference expression data
Orthologs
SpeciesHumanMouse
Entrez

7290

15260

Ensembl

ENSG00000100084

ENSMUSG00000022702

UniProt

P54198

Q61666

RefSeq (mRNA)

NM_003325

NM_001005228
NM_010435

RefSeq (protein)

NP_003316

NP_034565

Location (UCSC)Chr 22: 19.33 – 19.45 MbChr 16: 18.88 – 18.97 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

Protein HIRA is a protein that in humans is encoded by the HIRA gene.[5][6][7][8] This gene is mapped to 22q11.21, centromeric to COMT.[8]

Function

The specific function of this protein has yet to be determined; however, it has been speculated to play a role in transcriptional regulation and/or chromatin and histone metabolism.[8]

Research done by Salomé Adam, Sophie E. Polo, and Geneviève Almouzni indicate that HIRA proteins are involved in restarting transcription after UVC damage[9] Function of HIRA gene can be effectively examined by siRNA knockdown based on an independent validation.[10]

Clinical significance

It is considered the primary candidate gene in some haploinsufficiency syndromes such as DiGeorge syndrome, and insufficient production of the gene may disrupt normal embryonic development.[8]

Model organisms

Model organisms have been used in the study of HIRA function. A conditional knockout mouse line, called Hiratm1a(EUCOMM)Wtsi[15][16] was generated as part of the International Knockout Mouse Consortium program — a high-throughput mutagenesis project to generate and distribute animal models of disease to interested scientists.[17][18][19]

Male and female animals underwent a standardized phenotypic screen to determine the effects of deletion.[13][20] Twenty two tests were carried out on mutant mice and two significant abnormalities were observed.[13] No homozygous mutant mice survived until weaning. The remaining tests were carried out on heterozygous mutant adult mice and a decreased leukocyte cell number was recorded in male animals.[13]

Interactions

HIRA has been shown to interact with HIST1H2BK.[21]

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000100084 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000022702 - Ensembl, May 2017
  3. "Human PubMed Reference:".
  4. "Mouse PubMed Reference:".
  5. Halford S, Wadey R, Roberts C, Daw SC, Whiting JA, O'Donnell H, Dunham I, Bentley D, Lindsay E, Baldini A (Mar 1994). "Isolation of a putative transcriptional regulator from the region of 22q11 deleted in DiGeorge syndrome, Shprintzen syndrome and familial congenital heart disease". Hum Mol Genet. 2 (12): 2099–107. doi:10.1093/hmg/2.12.2099. PMID 8111380.
  6. Lamour V, Lécluse Y, Desmaze C, Spector M, Bodescot M, Aurias A, Osley MA, Lipinski M (Sep 1995). "A human homolog of the S. cerevisiae HIR1 and HIR2 transcriptional repressors cloned from the DiGeorge syndrome critical region". Hum Mol Genet. 4 (5): 791–9. doi:10.1093/hmg/4.5.791. PMID 7633437.
  7. Magnaghi P, Roberts C, Lorain S, Lipinski M, Scambler PJ (Oct 1998). "HIRA, a mammalian homologue of Saccharomyces cerevisiae transcriptional co-repressors, interacts with Pax3". Nat Genet. 20 (1): 74–7. doi:10.1038/1739. PMID 9731536.
  8. 1 2 3 4 "Entrez Gene: HIRA HIR histone cell cycle regulation defective homolog A (S. cerevisiae)".
  9. Adam, S., Polo, S. E., & Almouzni, G. (2013). Transcription Recovery after DNA Damage Requires Chromatin Priming by the H3.3 Histone Chaperone HIRA. Cell, 155(1), 94-106. Retrieved from http://www.cell.com/abstract/S0092-8674(13)01023-4
  10. Munkácsy, Gyöngyi; Sztupinszki, Zsófia; Herman, Péter; Bán, Bence; Pénzváltó, Zsófia; Szarvas, Nóra; Győrffy, Balázs (September 2016). "Validation of RNAi Silencing Efficiency Using Gene Array Data shows 18.5% Failure Rate across 429 Independent Experiments". Molecular Therapy. Nucleic Acids. 5 (9): e366. doi:10.1038/mtna.2016.66. ISSN 2162-2531. PMC 5056990. PMID 27673562.
  11. "Haematology data for Hira". Wellcome Trust Sanger Institute.
  12. "Salmonella infection data for Hira". Wellcome Trust Sanger Institute.
  13. 1 2 3 4 Gerdin AK (2010). "The Sanger Mouse Genetics Programme: High throughput characterisation of knockout mice". Acta Ophthalmologica. 88: 925–7. doi:10.1111/j.1755-3768.2010.4142.x.
  14. Mouse Resources Portal, Wellcome Trust Sanger Institute.
  15. "International Knockout Mouse Consortium".
  16. "Mouse Genome Informatics".
  17. Skarnes WC, Rosen B, West AP, Koutsourakis M, Bushell W, Iyer V, Mujica AO, Thomas M, Harrow J, Cox T, Jackson D, Severin J, Biggs P, Fu J, Nefedov M, de Jong PJ, Stewart AF, Bradley A (2011). "A conditional knockout resource for the genome-wide study of mouse gene function". Nature. 474 (7351): 337–342. doi:10.1038/nature10163. PMC 3572410. PMID 21677750.
  18. Dolgin E (2011). "Mouse library set to be knockout". Nature. 474 (7351): 262–3. doi:10.1038/474262a. PMID 21677718.
  19. Collins FS, Rossant J, Wurst W (2007). "A Mouse for All Reasons". Cell. 128 (1): 9–13. doi:10.1016/j.cell.2006.12.018. PMID 17218247.
  20. van der Weyden L, White JK, Adams DJ, Logan DW (2011). "The mouse genetics toolkit: revealing function and mechanism". Genome Biol. 12 (6): 224. doi:10.1186/gb-2011-12-6-224. PMC 3218837. PMID 21722353.
  21. Lorain S, Quivy JP, Monier-Gavelle F, Scamps C, Lécluse Y, Almouzni G, Lipinski M (September 1998). "Core histones and HIRIP3, a novel histone-binding protein, directly interact with WD repeat protein HIRA". Mol. Cell. Biol. 18 (9): 5546–56. PMC 109139. PMID 9710638.

Further reading

  • Lorain S, Demczuk S, Lamour V, Toth S, Aurias A, Roe BA, Lipinski M (1996). "Structural Organization of the WD repeat protein-encoding gene HIRA in the DiGeorge syndrome critical region of human chromosome 22". Genome Res. 6 (1): 43–50. doi:10.1101/gr.6.1.43. PMID 8681138.
  • Llevadot R, Scambler P, Estivill X, Pritchard M (1997). "Genomic organization of TUPLE1/HIRA: a gene implicated in DiGeorge syndrome". Mamm. Genome. 7 (12): 911–4. doi:10.1007/s003359900268. PMID 8995764.
  • Lorain S, Quivy JP, Monier-Gavelle F, Scamps C, Lécluse Y, Almouzni G, Lipinski M (1998). "Core histones and HIRIP3, a novel histone-binding protein, directly interact with WD repeat protein HIRA". Mol. Cell. Biol. 18 (9): 5546–56. PMC 109139. PMID 9710638.
  • Hall C, Nelson DM, Ye X, Baker K, DeCaprio JA, Seeholzer S, Lipinski M, Adams PD (2001). "HIRA, the human homologue of yeast Hir1p and Hir2p, is a novel cyclin-cdk2 substrate whose expression blocks S-phase progression". Mol. Cell. Biol. 21 (5): 1854–65. doi:10.1128/MCB.21.5.1854-1865.2001. PMC 86753. PMID 11238922.
  • Lorain S, Lécluse Y, Scamps C, Mattéi MG, Lipinski M (2001). "Identification of human and mouse HIRA-interacting protein-5 (HIRIP5), two mammalian representatives in a family of phylogenetically conserved proteins with a role in the biogenesis of Fe/S proteins". Biochim. Biophys. Acta. 1517 (3): 376–83. doi:10.1016/S0167-4781(00)00300-6. PMID 11342215.
  • Lehner B, Sanderson CM (2004). "A protein interaction framework for human mRNA degradation". Genome Res. 14 (7): 1315–23. doi:10.1101/gr.2122004. PMC 442147. PMID 15231747.
  • Collins JE, Wright CL, Edwards CA, Davis MP, Grinham JA, Cole CG, Goward ME, Aguado B, Mallya M, Mokrab Y, Huckle EJ, Beare DM, Dunham I (2005). "A genome annotation-driven approach to cloning the human ORFeome". Genome Biol. 5 (10): R84. doi:10.1186/gb-2004-5-10-r84. PMC 545604. PMID 15461802.
  • Gocke CB, Yu H, Kang J (2005). "Systematic identification and analysis of mammalian small ubiquitin-like modifier substrates". J. Biol. Chem. 280 (6): 5004–12. doi:10.1074/jbc.M411718200. PMID 15561718.
  • Zhang R, Poustovoitov MV, Ye X, Santos HA, Chen W, Daganzo SM, Erzberger JP, Serebriiskii IG, Canutescu AA, Dunbrack RL, Pehrson JR, Berger JM, Kaufman PD, Adams PD (2005). "Formation of MacroH2A-containing senescence-associated heterochromatin foci and senescence driven by ASF1a and HIRA". Dev. Cell. 8 (1): 19–30. doi:10.1016/j.devcel.2004.10.019. PMID 15621527.
  • Ahmad A, Kikuchi H, Takami Y, Nakayama T (2005). "Different roles of N-terminal and C-terminal halves of HIRA in transcription regulation of cell cycle-related genes that contribute to control of vertebrate cell growth". J. Biol. Chem. 280 (37): 32090–100. doi:10.1074/jbc.M501426200. PMID 16024922.
  • Tang Y, Poustovoitov MV, Zhao K, Garfinkel M, Canutescu A, Dunbrack R, Adams PD, Marmorstein R (2006). "Structure of a human ASF1a-HIRA complex and insights into specificity of histone chaperone complex assembly". Nat. Struct. Mol. Biol. 13 (10): 921–9. doi:10.1038/nsmb1147. PMC 2933817. PMID 16980972.
  • Zhang R, Chen W, Adams PD (2007). "Molecular dissection of formation of senescence-associated heterochromatin foci". Mol. Cell. Biol. 27 (6): 2343–58. doi:10.1128/MCB.02019-06. PMC 1820509. PMID 17242207.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.