Ethyl acetoacetate

Ethyl acetoacetate
Skeletal formula of ethyl acetoacetate
Space-filling model of the ethyl acetoacetate molecule
Names
IUPAC name
Ethyl 3-oxobutanoate
Other names
  • Acetoacetic acid ethyl ester
  • Ethyl acetylacetate
  • 3-Oxobutanoic acid ethyl ester
Identifiers
3D model (JSmol)
ChEMBL
ChemSpider
ECHA InfoCard 100.005.015
KEGG
RTECS number AK5250000
UNII
Properties
C6H10O3
Molar mass 130.14 g/mol
Appearance Colourless liquid
Odor Fruit or rum
Density 1.021 g/cm3, liquid
Melting point −45 °C (−49 °F; 228 K)
Boiling point 180.8 °C (357.4 °F; 453.9 K)
2.86 g/100 ml (20 °C)
Acidity (pKa)
  • 10.68 (in H2O)
  • 14.2 (in DMSO)
−71.67×10−6 cm3/mol
Hazards
Not listed
NFPA 704
Flammability code 2: Must be moderately heated or exposed to relatively high ambient temperature before ignition can occur. Flash point between 38 and 93 °C (100 and 200 °F). E.g., diesel fuelHealth code 2: Intense or continued but not chronic exposure could cause temporary incapacitation or possible residual injury. E.g., chloroformReactivity (yellow): no hazard codeSpecial hazards (white): no codeNFPA 704 four-colored diamond
2
2
Flash point 70 °C (158 °F; 343 K)
Related compounds
Related esters
Related compounds
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☑Y verify (what is ☑Y☒N ?)
Infobox references

The organic compound ethyl acetoacetate (EAA) is the ethyl ester of acetoacetic acid. It is mainly used as a chemical intermediate in the production of a wide variety of compounds, such as amino acids, analgesics, antibiotics, antimalarial agents, antipyrine and aminopyrine, and vitamin B1; as well as the manufacture of dyes, inks, lacquers, perfumes, plastics, and yellow paint pigments. Alone, it is used as a flavoring for food.

Preparation

Ethyl acetoacetate is produced industrially by treatment of diketene with ethanol.[1]

The preparation of ethyl acetoacetate is a classic laboratory procedure.[2] It is prepared via the Claisen condensation of ethyl acetate. Two moles of ethyl acetate condense to form one mole each of ethyl acetoacetate and ethanol.

Reactivity

Ethyl acetoacetate is subject to keto-enol tautomerism. In the neat liquid at 33 °C, the enol consists of 15% of the total.[3]


Ethyl acetoacetate is often used in the acetoacetic ester synthesis similar to diethyl malonate in the malonic ester synthesis or the Knoevenagel condensation. The protons alpha to carbonyl groups are acidic, and the resulting carbanion can undergo nucleophilic substitution. A subsequent thermal decarboxylation is also possible.[4] Similar to the behavior of acetylacetone, the enolate of ethyl acetoacetate can also serve as a bidentate ligand. For example, it forms purple coordination complexes with iron(III) salts:

Ethyl acetoacetate can also be reduced to ethyl 3-hydroxybutyrate.

Ethyl acetoacetate, when heated alone (uncatalyzed) with benzyl alcohol, forms synthetically useful benzyl acetoacetate (benzyl groups being easily removed later by catalytic hydrogenolysis over Pd/C under neutral conditions), via a mechanism involving acetylketene. Ethyl (and other) acetoacetates nitrosate readily with equimolar sodium nitrite in acetic acid, to afford the corresponding oximinoacetoacetate esters. A dissolving-zinc reduction of these in acetic acid in the presence of ketoesters or beta-diketones constitute the Knorr synthesis of pyrroles, useful for porphyrin synthesis.

See also

  • Fructone, the ethylene glycol ketal of ethyl acetoacetate, an aroma compound

References

  1. Wilhelm Riemenschneider and Hermann M. Bolt "Esters, Organic" Ullmann's Encyclopedia of Industrial Chemistry 2005, Wiley-VCH, Weinheim. doi:10.1002/14356007.a09_565.pub2
  2. J. K. H. Inglis and K. C. Roberts (1926). "Ethyl Acetoacetate". Organic Syntheses. ; Collective Volume, 1, p. 235
  3. Jane L. Burdett; Max T. Rogers (1964). "Keto-Enol Tautomerism in β-Dicarbonyls Studied by Nuclear Magnetic Resonance Spectroscopy. I. Proton Chemical Shifts and Equilibrium Constants of Pure Compounds". J. Am. Chem. Soc. 86: 2105–2109. doi:10.1021/ja01065a003.
  4. Carey, Francis A. (2006). Organic Chemistry (Sixth ed.). New York, NY: McGraw-Hill. ISBN 0-07-111562-5.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.