Dimethylglyoxime

Dimethylglyoxime
Names
IUPAC name
N,N-Dihydroxy-2,3-butanediimine
Other names
  • Dimethylglyoxime
  • Diacetyl dioxime
  • Butane-2,3-dioxime
  • Chugaev's reagent
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.002.201
RTECS number EK2975000
UNII
Properties
C4H8N2O2
Molar mass 116.12 g·mol−1
Appearance White/Off White Powder
Density 1.37 g/cm3
Melting point 240 to 241 °C (464 to 466 °F; 513 to 514 K)
Boiling point decomposes
low
Structure
0
Hazards
Main hazards Toxic, Skin/Eye Irritant
Safety data sheet External MSDS
R-phrases (outdated) R20/22
S-phrases (outdated) R22, R36/37
NFPA 704
Flammability (red): no hazard codeHealth code 2: Intense or continued but not chronic exposure could cause temporary incapacitation or possible residual injury. E.g., chloroformReactivity (yellow): no hazard codeSpecial hazards (white): no codeNFPA 704 four-colored diamond
2
Related compounds
Related compounds
Hydroxylamine
salicylaldoxime
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☑Y verify (what is ☑Y☒N ?)
Infobox references

Dimethylglyoxime is a chemical compound described by the formula CH3C(NOH)C(NOH)CH3. Its abbreviation is dmgH2 for neutral form, and dmgH for anionic form, where H stands for hydrogen. This colourless solid is the dioxime derivative of the diketone butane-2,3-dione (also known as diacetyl). DmgH2 is used in the analysis of palladium or nickel. Its coordination complexes are of theoretical interest as models for enzymes and as catalysts. Many related ligands can be prepared from other diketones, e.g. benzil.

Preparation

Dimethylglyoxime can be prepared from butanone first by reaction with ethyl nitrite to give biacetyl monoxime. The second oxime is installed using sodium hydroxylamine monosulfonate:[1]

Complexes

Dimethylglyoxime is used to detect and quantify nickel, which forms the bright red complex nickel bis(dimethylglyoximate) (Ni(dmgH)2). The reaction was discovered by L. A. Chugaev in 1905.[2]

       

Cobalt complexes have also received much attention. In chloro(pyridine)cobaloxime[3] the macrocycle [dmgH]22− mimics the macrocyclic ligand found in vitamin B12.

Structure of chloro(pyridine)cobaloxime.

References

  1. Semon, W. L.; Damerell, V. R. (1930). "Dimethylglyoxime". Organic Syntheses. 10: 22. doi:10.15227/orgsyn.010.0022.
  2. Lev Tschugaeff (1905). "Über ein neues, empfindliches Reagens auf Nickel". Berichte der deutschen chemischen Gesellschaft. 38 (3): 2520–2522. doi:10.1002/cber.19050380317.
  3. Girolami, G.. S.; Rauchfuss, T.B.; Angelici, R. J. (1999). Synthesis and Technique in Inorganic Chemistry: A Laboratory Manual (3rd ed.). pp. 213–215.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.