Denawaka Ganga Mini Hydro Power Project

Denawaka Ganga Mini Hydro Power Project
Power House
Country Sri Lanka
Location Ratnapura, Sabaragamuwa Province
Coordinates 06°42′12″N 80°26′59″E / 6.70333°N 80.44972°E / 6.70333; 80.44972Coordinates: 06°42′12″N 80°26′59″E / 6.70333°N 80.44972°E / 6.70333; 80.44972
Purpose Power
Status Operational
Construction began October 2009 (2009-10)
Opening date February 2012 (2012-02)
Owner(s) Country Energy (Pvt) Ltd
Power Station
Type run of the river
Installed capacity 7.2 MW
Annual generation 25 GWh

Denawaka Ganga Mini Hydro Power[1][2] Project is a run of river mini hydro power project located in Ratnapura, Sri Lanka. The install capacity of the project is 7.2MW and the annual generation is 25GWh. The generated energy is fed into the national electric grid of Sri Lanka.

Introduction

The plant uses the water flow of the river “Denawaka Ganga”, which is a main tributary of river “Kalu Ganga”. Denawaka Ganga is formed by the confluence of river “Denawaka Ganga” (Upper) and river “Bambarabatu Oya” at a location known as Mawella. The headwaters of both rivers originate in the Bambarabatuwa forest reserve, a wet zone forest extending over more than 5,000 Hectares. Both rivers flow in a westerly direction south of the Adams Peak hill range, on the south western slopes of Sri Lanka. The catchment basin of the source, especially the Bambarabatu Oya sub-catchment, experiences some of the highest and most consistent rainfall in Sri Lanka. In total, the plant has a catchment area of 172.58km2.

The project comprises diversion weir, intake, headrace channel, forebay, penstocks, powerhouse, tailrace, and switchyard. The intake structure is in the right bank of the river and the waterway continues for 1,800 meters in a channel with a box section up to the forebay tank. Then, water is taken through penstocks for a distance of 107 meters to the powerhouse.

Since the project is run-of-the-river type, no need of storing of water is required at the weir. The water leaves the generating station and is returned to the river without altering the existing flow or water levels. The electricity is stepped up to 33kV to match the transmission voltage of the local grid. The generated power is then transmitted through a 33kV line to the grid substation.

In the hydropower generation process, there are no greenhouse gas emissions and it does not involve burning of fossil fuels during the process. Thus, electricity is generated through sustainable means without causing any negative impact on the environment. Hence, the technology adopted for the project activity is an environmentally safe and sound technology.

Location of the Power Plant

Location

The Project area is located near Durekkanda, 9 km from Rathnapura Town in the Rathnapura Divisional Secretariat of the Rathnapura District in Sabaragamuwa Province of Sri Lanka.

Topography surveys of the project area are available in the sheet 75 – Balangoda which in the scale of 1:50,000 by Survey Department of Sri Lanka. The Geo Coordinates of the project activity as follows, Weir - 060 41’ 39” N & 800 28’ 06” E Power Plant - 060 42’ 12” N & 800 26’ 59” E

The project location is close to the town of Ratnapura approximately 115km from Colombo, and the project is accessible from the main Ratnapura-Balangoda road. The site is reached by turning right just beyond the Malwala town and proceeding approximately 3km on a by-road

General Arrangement of Project Construction Area around Forebay and Power House

Project Implementation

The project developer is Country Energy (Pvt) Ltd, a subsidiary of Vallibel Power Erathna PLC,[2]which is one of the leading mini hydropower developers in Sri Lanka.[3]

The development of the project was initiated in September 2002 with the investigation of the feasibility of the project and it was decided to develop the project with a capacity of 4.9MW. It took few years to go through various regulatory clearances from the government authorities and a portion of government land was released in the year 2008 after a long process. Vallibel Power Erathna PLC acquired the project in early 2009 and decided to increase the capacity up to 7.2MW after a fresh feasibility study by the Vallibel project team[4] then, the construction works were started in October 2009[1]

The project was commenced with construction work of access road. Parallel to that, bungalow, batching plant, crusher, bulk material store yards, stores, working yards, site office and labour camps were properly structured and everything was managed in a good professional manner. This made the work more efficient and effective.

Weir

The weir of 30 m length with a maximum height of 2.5 m was constructed to divert water to the intake. The weir is a straight concrete gravity structure made of plum concrete with an ogee profile. In order to prevent silt and trash entering the channel, a trash screen was utilized.[2]

Intake

Inspection of Weir Location by Chairman of the Vallibel Group, Mr. Dhammika Perera (R) & Chief Executive Officer, Mr. Aruna Dheerasinghe (L)

Intake was constructed with 4 sluice gates of 3m width and 2.5 m height. It satisfies the requirement of getting 25m3/s flow with 1.25m/s intake flow velocity. The intake conveys the water into the concrete headrace channel. The intake is 30m long, 20m wide and 2.2m deep.[1]

Headrace Channel

Inspection of Channel Path by Chief Executive Officer; Mr. Aruna Dheerasinghe and the Site Manager; Mr. Balasooriya

The intake leads to the rectangular profiled headrace channel of 1,800 m length which was made of reinforced concrete. The headrace channel lies on the right bank of the stream and it has 4.4m inner width and 2.2m of wall height while the design flow is 27m3/s. This bank has moderately steep slopes, and the bedrock is marginally weathered. Reinforced concrete channel sections were placed on screed concrete and expansion joints were provided at every 17m with 250mm wide rubber water bars.[2]

Forebay

The headrace channel ends at the forebay tank. The forebay was made of reinforced concrete with a trash screen of 8.5m x 5.5m and it was placed before the penstock entry. The top of the forebay was covered while a spillway is constructed just upstream of the forebay. The forebay tank is 50m long and 9.3m wide. The maximum height of the tank is 10m.[1]

Penstock

After the forebay, water divert into the penstock to deliver water into the turbines. The penstock comprises three welded steel pipes at forebay, having diameter of 1850mm each. Then the three pipes reduce to 1785mm diameter at the Anchor 2. At the third anchor, the middle pipe bifurcates into two pipes having diameters of 1220mm each and other two reduce to 1720mm diameter and continue same up to the power house. The penstock trace is geologically well stable, and minor excavation was required to construct the penstock.

The pipe was spiral welded steel made to American Petroleum Institute standards (API 5L Grade B). The pipe was brought to site in 5.8m sections and welded together at site. Total length of the steel pipes was covered with reinforced concrete and it was buried with soil. The length of the penstock is 107m and the design flow of one pipe is 8.3m3/s each of 3 pipes.[1]

Powerhouse

Power House

The powerhouse consists of the turbines, generators and control room. The turbine bay contains a 25MT capacity crane for handling of the equipment during installation and repairs. The necessary transformer and high voltage switchgear were housed outside the powerhouse.

The project generates electricity at 6.6kV and then steps it up to 33kV via four transformers. The electricity generated exported via a 33kV transmission line of 10.2km length to the 33kV line at the Ratnapura Grid Substation.

The powerhouse was built adjacent to the river at the downstream end of the drop. It is 54m long, 14.5m wide and 18m high.

Electro-mechanical Equipment

Turbines and Generators
Control Panels
Transformers

The power generation units are manufactured by Dong Feng Electric Machinery Works Co., Ltd (China)[2] and have a total capacity of 7.2 MW. More details on the applied technology as follows,

Turbine 1 & 2
Model : HLA551C-WJ-112
No. of Units : 2
Mean Diameter of Runner : 1.12 m
Rated Speed : 428.6 rpm
Max runaway speed : 890 rpm
Type : Horizontal Francis hydro turbine
Turbine Power Output : 2,660 kW
Turbine 3 & 4
Model : HLA551C-WJ-80
No. of Units : 2
Mean Diameter of Runner : 0.8 m
Rated Speed : 600 rpm
Max runaway speed : 1,246 rpm
Type : Horizontal Francis hydro turbine
Turbine Power Output : 1,246 rpm
Generator 1 & 2
Model : SFW2500-14/2150
No. of Units : 2
Rated output power : 2,500 kW
Rated voltage : 6,600 V
Excitation : Static SCR excitation
Rated Speed : 428.6 rpm
Max runaway speed : 890 rpm
Generator 3 & 4
Model : SFW1250-10/1730
No. of Units : 2
Rated output power : 1,250 kW
Rated voltage : 6,600 V
Excitation : Static SCR excitation
Rated Speed : 600 rpm
Max runaway speed : 1,246 rpm

Tailrace

The tailrace channel conveys the tail water back to the river.

Transmission Line

The 33kV transmission line was 10.2km long, and connected up to the 33kV line at the Ratnapura Grid Substation. A single circuit concrete pole line was built along the road from the powerhouse to the feeder.

Financial Background

Total investment of the company was 905 MN LKR and Equity to debt ratio is 30:70. Debt facilities were arranged by Commercial Bank, Hatton National Bank & DFCC Bank.[5][6]

Design

(China), Mr. Aruna Dheerasinghe and Mr. Sampath Abeysinghe

Power House Structural design was carried out by Stems Consultants (Pte) Ltd, while its architectural design concept from Vallibel team. The structural designer of weir, intake, channel and forebay was Mr. D.F.M. Perera. The hydraulic designs for weir, intake, channel, forebay and penstock were done by Mr. G.G. Jayawardhana, and Mr. Aruna Dheerasinghe and power house hydraulic designers were Dong Feng Electric Machinery Works Co., Ltd The plant is commissioned on February 2012 and since then it serves Sri Lankan national grid by providing 25GWh of green energy in every year.[7]

Contribution to Sustainable Development

Environment benefits

The renewable electricity generated by the project displaces electricity produced by fossil fuel power plants leading to lower overall emissions of SOx and NOx from the grid as a whole. In the hydro power generation process there are no greenhouse gas emissions and it does not involve burning of fossil fuels during the process. Thus, electricity generated through sustainable means without causing any negative impact on the environment. The project reduces approximately 13,500 tCO2e of annually as a result of displacement of fossil-fuel based grid electricity in Sri Lanka.[1][8]

The company always concerns about the greenery management of site and many environmental management programs are run for fulfill the requirement.

Social Development

The project activity created a lot of social benefits. It increased employment opportunities and the income of local people during the construction period. During the operation and construction period, the project created new training opportunities for the local community members. In addition, the local community was benefited with new access roads, donations to the local schools, and provision of medicines for children. In addition, the general public at large including the local residents and communities were indirectly benefited by greater availability of clean electricity in the national grid which would otherwise being met through grid connected fossil fuel based power plants.[2]

Social Welfare

This project worked closely with the community to upgrade their standard of living and made a genuine contribution to their lives. During the construction of plant, the welfare of the community, minimal disturbance to lifestyles, construction and maintenance of the roads are prioritized. The welfare activities are as follows.[9][10]

  • Construction of Durekanda Goanakumbura Road
  • Construction of Causeway across the Denawaka Ganga
  • Construction of Galaboda Meegasthenna Road
  • Construction of Atikehelpola North Road
  • Concreting of Atikehelpola South Road
  • Renovation of Durekanda Community Hall
  • Renovation of Galabada Community Hall
  • Donations given for students of Malwala Gallalla Maha Vidyalaya and Nethmini Pre-school.
  • Renovation of Galabada Temple
  • Donations given for Religious activities in temples
  • Donations given for heart surgeries, eye operations, kidney transplant & other several health care activities.

Environmental Impacts

This project results in a reduction in the water flow between the weir and the powerhouse and mandatory discharge is released throughout the project life to avoid any impact on river ecosystem. The water quality does not change due to implementation of the project and there is no change in the water availability downstream too. The potential environmental impacts identified were soil erosion, loss of soil stability and slope failure, reduction in the river flow between the weir and tailrace, some ecological impacts such as interference to fish mobility, destruction of plants and noise. But, the potential impacts in this project were negligible comparatively and all the precautions were taken to minimize the impacts as on the recommendations of relevant authorities and consultants.[8][4][7]

Awards and Certificates

Confirming that the Denawaka Ganga MHP is an environmental friendly project, UNFCCC (United Nations Framework Convention on Climate Change) registered it as a Clean Development Mechanism (CDM) project[11] CDM project consultant was Mitsubishi UFJ Morgan Stanley Securities Co., Ltd and coordination work from Country Energy (Pvt) Ltd was done by Chief Executive Officer; Mr. Aruna Dheerasinghe and Engineer; Ms. Tharanga Baduge. The validator of the project was TÜV NORD CERT GmbH.

References

  1. 1 2 3 4 5 6 PDD (PDF) http://cdm.unfccc.int/filestorage/G/D/4/GD4C0MVQBLJH536RYP8UKZWAS7OIT1/PDD.pdf?t=WFJ8bnFxczNufDBLMD1bNOa7ENiIkdC4Lfxi. Missing or empty |title= (help)
  2. 1 2 3 4 5 6 Vallibel Web http://www.vallibel-hydro.com/projects/denawaka-hydro-power.php. Missing or empty |title= (help)
  3. "Annual Report 2009-2010" (PDF). Annual Report 2009-2010.
  4. 1 2 "PUCSL" (PDF). PUCSL.
  5. "DFCC Annual Report" (PDF). DFCC Annual Report.
  6. "DFCC Annual Report 2" (PDF). DFCC Annual Report.
  7. 1 2 "CEB web". CEB web. Archived from the original on 2015-07-15.
  8. 1 2 Report.pdf?t=cDl8bnFxczY1fDBy1JeBnZTiDuYr7l6IO_ct "Validation Report" Check |url= value (help) (PDF). Validation Report.
  9. "Annual Report 2012-2013" (PDF). Annual Report 2012-2013.
  10. "Annual Report 2013-2014" (PDF). Annual Report 2013-2014.
  11. "CDM registered project". CDM registered project.

Dhammika Perera
Annual Report 2009-2010
Green Award CEA
http://voicesofsrilanka.com/business-profile/energy/valliber-power-erathna
http://ppi-re.worldbank.org/data/project/vallibel-erathna-shpp-4397
http://videohdtv.co/mp3moviedownload.php?erathna-hydropower-projectM0HzNEVLQro
http://www.industcards.com/hydro-sri-lanka.htm
http://www.energyservices.lk/statistics/disbursement.htm
http://www.lra.com.lk/reports/power_sector_update.pdf

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.