DDX42

DDX42
Identifiers
AliasesDDX42, DDX42P, RHELP, RNAHP, SF3B8, SF3b125, DEAD-box helicase 42
External IDsMGI: 1919297 HomoloGene: 49137 GeneCards: DDX42
Gene location (Human)
Chr.Chromosome 17 (human)[1]
Band17q23.3Start63,773,603 bp[1]
End63,819,317 bp[1]
RNA expression pattern
More reference expression data
Orthologs
SpeciesHumanMouse
Entrez

11325

72047

Ensembl

ENSG00000198231

ENSMUSG00000020705

UniProt

Q86XP3

Q810A7

RefSeq (mRNA)

NM_007372
NM_203499

NM_028074

RefSeq (protein)

NP_031398
NP_987095

NP_082350
NP_001348569
NP_001348571
NP_001348572
NP_001348573

Location (UCSC)Chr 17: 63.77 – 63.82 MbChr 11: 106.22 – 106.25 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

ATP-dependent RNA helicase DDX42 is an enzyme that in humans is encoded by the DDX42 gene.[5][6]

Function

This gene encodes a member of the Asp-Glu-Ala-Asp (DEAD) box protein family. Members of this protein family are putative RNA helicases, and are implicated in a number of cellular processes involving alteration of RNA secondary structure such as translation initiation, nuclear and mitochondrial splicing, and ribosome and spliceosome assembly. Members of this family are believed to be involved in embryogenesis, spermatogenesis, and cellular growth and division. Two transcript variants encoding the same protein have been identified for this gene.[6]

Interactions

DDX42 has been shown to interact with SF3B1.[7]

Model organisms

Model organisms have been used in the study of DDX42 function. A conditional knockout mouse line called Ddx42tm1b(EUCOMM)Wtsi was generated at the Wellcome Trust Sanger Institute.[8] Male and female animals underwent a standardized phenotypic screen[9] to determine the effects of deletion.[10][11][12][13] Additional screens performed: - In-depth immunological phenotyping[14]

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000198231 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000020705 - Ensembl, May 2017
  3. "Human PubMed Reference:".
  4. "Mouse PubMed Reference:".
  5. Suk K, Kim S, Kim YH, Oh SH, Lee MK, Kim KW, Kim HD, Seo YS (Apr 2000). "Identification of a novel human member of the DEAD box protein family". Biochimica et Biophysica Acta. 1501 (1): 63–9. doi:10.1016/S0925-4439(00)00010-7. PMID 10727850.
  6. 1 2 "Entrez Gene: DDX42 DEAD (Asp-Glu-Ala-Asp) box polypeptide 42".
  7. Will CL, Urlaub H, Achsel T, Gentzel M, Wilm M, Lührmann R (Sep 2002). "Characterization of novel SF3b and 17S U2 snRNP proteins, including a human Prp5p homologue and an SF3b DEAD-box protein". The EMBO Journal. 21 (18): 4978–88. doi:10.1093/emboj/cdf480. PMC 126279. PMID 12234937.
  8. Gerdin AK (2010). "The Sanger Mouse Genetics Programme: high throughput characterisation of knockout mice". Acta Ophthalmologica. 88: 925–7. doi:10.1111/j.1755-3768.2010.4142.x.
  9. 1 2 "International Mouse Phenotyping Consortium".
  10. Skarnes WC, Rosen B, West AP, Koutsourakis M, Bushell W, Iyer V, Mujica AO, Thomas M, Harrow J, Cox T, Jackson D, Severin J, Biggs P, Fu J, Nefedov M, de Jong PJ, Stewart AF, Bradley A (Jun 2011). "A conditional knockout resource for the genome-wide study of mouse gene function". Nature. 474 (7351): 337–42. doi:10.1038/nature10163. PMC 3572410. PMID 21677750.
  11. Dolgin E (Jun 2011). "Mouse library set to be knockout". Nature. 474 (7351): 262–3. doi:10.1038/474262a. PMID 21677718.
  12. Collins FS, Rossant J, Wurst W (Jan 2007). "A mouse for all reasons". Cell. 128 (1): 9–13. doi:10.1016/j.cell.2006.12.018. PMID 17218247.
  13. White JK, Gerdin AK, Karp NA, Ryder E, Buljan M, Bussell JN, Salisbury J, Clare S, Ingham NJ, Podrini C, Houghton R, Estabel J, Bottomley JR, Melvin DG, Sunter D, Adams NC, Tannahill D, Logan DW, Macarthur DG, Flint J, Mahajan VB, Tsang SH, Smyth I, Watt FM, Skarnes WC, Dougan G, Adams DJ, Ramirez-Solis R, Bradley A, Steel KP (Jul 2013). "Genome-wide generation and systematic phenotyping of knockout mice reveals new roles for many genes". Cell. 154 (2): 452–64. doi:10.1016/j.cell.2013.06.022. PMC 3717207. PMID 23870131.
  14. 1 2 "Infection and Immunity Immunophenotyping (3i) Consortium".

Further reading

  • Olsen JV, Blagoev B, Gnad F, Macek B, Kumar C, Mortensen P, Mann M (Nov 2006). "Global, in vivo, and site-specific phosphorylation dynamics in signaling networks". Cell. 127 (3): 635–48. doi:10.1016/j.cell.2006.09.026. PMID 17081983.
  • Uhlmann-Schiffler H, Jalal C, Stahl H (2006). "Ddx42p--a human DEAD box protein with RNA chaperone activities". Nucleic Acids Research. 34 (1): 10–22. doi:10.1093/nar/gkj403. PMC 1325199. PMID 16397294.
  • Ballif BA, Villén J, Beausoleil SA, Schwartz D, Gygi SP (Nov 2004). "Phosphoproteomic analysis of the developing mouse brain". Molecular & Cellular Proteomics. 3 (11): 1093–101. doi:10.1074/mcp.M400085-MCP200. PMID 15345747.
  • Will CL, Urlaub H, Achsel T, Gentzel M, Wilm M, Lührmann R (Sep 2002). "Characterization of novel SF3b and 17S U2 snRNP proteins, including a human Prp5p homologue and an SF3b DEAD-box protein". The EMBO Journal. 21 (18): 4978–88. doi:10.1093/emboj/cdf480. PMC 126279. PMID 12234937.


This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.