Conway group Co3

In the area of modern algebra known as group theory, the Conway group Co3 is a sporadic simple group of order

   210 · 37 · 53 · 7 · 11 · 23
= 495766656000
≈ 5×1011.

History and properties

Co3 is one of the 26 sporadic groups and was discovered by (Conway 1968, 1969) as the group of automorphisms of the Leech lattice Λ fixing a lattice vector of type 3, thus length 6. It is thus a subgroup of Co0. It is isomorphic to a subgroup of Co1. The direct product 2xCo3 is maximal in Co0.

The Schur multiplier and the outer automorphism group are both trivial.

Representations

Co3 acts on the unique 23-dimensional even lattice of determinant 4 with no roots, given by the orthogonal complement of a norm 4 vector of the Leech lattice. This gives 23-dimensional representations over any field; over fields of characteristic 2 or 3 this can be reduced to a 22-dimensional faithful representation.

Co3 has a doubly transitive permutation representation on 276 points.

Feit (1974) showed that if a finite group has an absolutely irreducible faithful rational representation of dimension 23 and has no subgroups of index 23 or 24 then it is contained in either Z/2Z × Co2 or Z/2Z × Co3.

Maximal subgroups

Some maximal subgroups fix or reflect 2-dimensional sublattices of the Leech lattice. It is usual to define these planes by h-k-l triangles: triangles including the origin as a vertex, with edges (differences of vertices) being vectors of types h, k, and l.

Finkelstein (1973) found the 14 conjugacy classes of maximal subgroups of Co3 as follows:

  • McL:2 – McL fixes a 2-2-3 triangle. The maximal subgroup also includes reflections of the triangle. Co3 has a doubly transitive permutation representation on 276 type 2-2-3 triangles containing the type 3 point fixed by Co3.
  • HS – fixes a 2-3-3 triangle.
  • U4(3).22
  • M23 – fixes a 2-3-4 triangle.
  • 35:(2 × M11) - fixes or reflects a 3-3-3 triangle.
  • 2.Sp6(2) – centralizer of involution class 2A (trace 8), which moves 240 of the 276 type 2-2-3 triangles
  • U3(5):S3
  • 31+4:4S6
  • 24.A8
  • PSL(3,4):(2 × S3)
  • 2 × M12 – centralizer of involution class 2B (trace 0), which moves 264 of the 276 type 2-2-3 triangles
  • [210.33]
  • S3 × PSL(2,8):3
  • A4 × S5

Conjugacy classes

The names of conjugacy classes are taken from the Atlas of Finite Group Representations.[1] The cycle structures listed act on the 276 2-2-3 triangles that share the fixed type 3 vertex.[2]

ClassOrder of centralizerSize of classCycle type
1Aall Co31
2A2,903,04033·52·11·23136,2120
2B190,08023·34·52·7·23112,2132
3A349,92025·52·7·11·2316,390
3B29,16027·3·52·7·11·23115,387
3C4,53627·33·53·11·23392
4A23,0402·35·52·7·11·23116,210,460
4B1,5362·36·53·7·11·2318,214,460
5A150028·36·7·11·231,555
5B30028·36·5·7·11·2316,554
6A4,32025·34·52·7·11·2316,310,640
6B1,29626·33·53·7·11·2323,312,639
6C21627·34·53·7·11·2313,26,311,638
6D10828·34·53·7·11·2313,26,33,642
6E7227·35·53·7·11·2334,644
7A4229·36·53·11·2313,739
8A19224·36·53·7·11·2312,23,47,830
8B19224·36·53·7·11·2316,2,47,830
8C3225·37·53·7·11·2312,23,47,830
9A16229·33·53·7·11·2332,930
9B81210·33·53·7·11·2313,3,930
10A6028·36·52·7·11·231,57,1024
10B2028·37·52·7·11·2312,22,52,1026
11A2229·37·53·7·231,1125power equivalent
11B2229·37·53·7·231,1125
12A14426·35·53·7·11·2314,2,34,63,1220
12B4826·36·53·7·11·2312,22,32,64,1220
12C3628·35·53·7·11·231,2,35,43,63,1219
14A1429·37·53·11·231,2,751417
15A15210·36·52·7·11·231,5,1518
15B3029·36·52·7·11·2332,53,1517
18A1829·35·53·7·11·236,94,1813
20A2028·37·52·7·11·231,53,102,2012power equivalent
20B2028·37·52·7·11·231,53,102,2012
21A21210·36·53·11·233,2113
22A2229·37·53·7·231,11,2212power equivalent
22B2229·37·53·7·231,11,2212
23A23210·37·53·7·112312power equivalent
23B23210·37·53·7·112312
24A2427·36·53·7·11·23124,6,1222410
24B2427·36·53·7·11·232,32,4,122,2410
30A3029·36·52·7·11·231,5,152,308

Generalized Monstrous Moonshine

In analogy to monstrous moonshine for the monster M, for Co3, the relevant McKay-Thompson series is where one can set the constant term a(0) = 24 (A097340),

and η(τ) is the Dedekind eta function.

References

  • Conway, John Horton (1968), "A perfect group of order 8,315,553,613,086,720,000 and the sporadic simple groups", Proceedings of the National Academy of Sciences of the United States of America, 61 (2): 398–400, doi:10.1073/pnas.61.2.398, MR 0237634, PMC 225171
  • Conway, John Horton (1969), "A group of order 8,315,553,613,086,720,000", The Bulletin of the London Mathematical Society, 1: 79–88, doi:10.1112/blms/1.1.79, ISSN 0024-6093, MR 0248216
  • Conway, John Horton (1971), "Three lectures on exceptional groups", in Powell, M. B.; Higman, Graham, Finite simple groups, Proceedings of an Instructional Conference organized by the London Mathematical Society (a NATO Advanced Study Institute), Oxford, September 1969., Boston, MA: Academic Press, pp. 215–247, ISBN 978-0-12-563850-0, MR 0338152 Reprinted in Conway & Sloane (1999, 267–298)
  • Conway, John Horton; Sloane, Neil J. A. (1999), Sphere Packings, Lattices and Groups, Grundlehren der Mathematischen Wissenschaften, 290 (3rd ed.), Berlin, New York: Springer-Verlag, ISBN 978-0-387-98585-5, MR 0920369
  • Feit, Walter (1974), "On integral representations of finite groups", Proceedings of the London Mathematical Society, Third Series, 29: 633–683, doi:10.1112/plms/s3-29.4.633, ISSN 0024-6115, MR 0374248
  • Finkelstein, Larry (1973), "The maximal subgroups of Conway's group C₃ and McLaughlin's group", Journal of Algebra, 25: 58–89, doi:10.1016/0021-8693(73)90075-6, ISSN 0021-8693, MR 0346046
  • Thompson, Thomas M. (1983), From error-correcting codes through sphere packings to simple groups, Carus Mathematical Monographs, 21, Mathematical Association of America, ISBN 978-0-88385-023-7, MR 0749038
  • Conway, John Horton; Parker, Richard A.; Norton, Simon P.; Curtis, R. T.; Wilson, Robert A. (1985), Atlas of finite groups, Oxford University Press, ISBN 978-0-19-853199-9, MR 0827219
  • Griess, Robert L. Jr. (1998), Twelve sporadic groups, Springer Monographs in Mathematics, Berlin, New York: Springer-Verlag, ISBN 978-3-540-62778-4, MR 1707296
  • Wilson, Robert A. (2009), The finite simple groups., Graduate Texts in Mathematics 251, Berlin, New York: Springer-Verlag, doi:10.1007/978-1-84800-988-2, ISBN 978-1-84800-987-5, Zbl 1203.20012
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.