Circular economy

A circular economy is a regenerative system in which resource input and waste, emission, and energy leakage are minimized by slowing, closing, and narrowing energy and material loops; this can be achieved through long-lasting design, maintenance, repair, reuse, remanufacturing, refurbishing, recycling, and upcycling.[1] This is in contrast to a linear economy which is a 'take, make, dispose' model of production.[2]

A major argument in favour of the circular economy approach is that achieving a sustainable world does not require changes in the quality of life of consumers, nor does it require loss of revenues or extra costs for manufacturers and other economic agents. The argument is that circular business models can be as profitable as linear models and allow consumers to keep enjoying similar products and services.

To achieve models that are economically and environmentally sustainable, the circular economy focuses on areas such as design thinking, systems thinking, product life extension, and recycling.

Origins

As early as 1966 Kenneth Boulding already raised awareness of an "open economy" with unlimited input resources and output sinks in contrast with a "closed economy", in which resources and sinks are tied and remain as long as possible a part of the economy. Boulding's essay "The Economics of the Coming Spaceship Earth"[3] is often cited as the origin of the concept of the "circular economy",[4] although Boulding does not use that phrase.

The circular economy is grounded in the study of feedback-rich (non-linear) systems, particularly living systems.[2] The contemporary understanding of the Circular Economy and its practical applications to economic systems evolved incorporating different features and contributions from a variety of concepts sharing the idea of closed loops. Some of the relevant theoretical influences are cradle to cradle, laws of ecology, looped and performance economy, regenerative design, industrial ecology, biomimicry and blue economy.[1]

Other early schools of thought include Professor Walter R. Stahel, Gunter Pauli, William McDonough and Michael Braungart, and complementary approaches such as Industrial Ecology, Permaculture and The Natural Step.

The concept of a circular economy (CE) was raised by British environmental economists David W. Pearce and R. Kerry Turner in 1989. In Economics of Natural Resources and the Environment,[5] they pointed out that a traditional open-ended economy was developed with no built-in tendency to recycle, which was reflected by treating the environment as a waste reservoir.[6]

In the early 1990s, Tim Jackson began to pull together the scientific basis for this new approach to industrial production published in his edited collection Clean Production Strategies[7], including chapters from pre-eminent writers in the field, such as Walter R Stahel, Bill Rees, and Bob Costanza. At the time still called 'preventive environmental management', his follow-on book Material Concerns - Pollution, Profit and Quality of Life[8] synthesised these findings into a manifesto for change, moving industrial production away from an extractive linear system towards a more circular economy.

Moving away from the linear model

Linear "take, make, dispose" industrial processes and the lifestyles that feed on them deplete finite reserves to create products that end up in landfills or in incinerators.

This realisation triggered the thought process of a few scientists and thinkers, including Walter R. Stahel, an architect, economist, and a founding father of industrial sustainability. Credited with having coined the expression "Cradle to Cradle" (in contrast with "Cradle to Grave", illustrating our "Resource to Waste" way of functioning), in the late 1970s, Stahel worked on developing a "closed loop" approach to production processes, co-founding the Product-Life Institute in Geneva more than 25 years ago. In the UK, Steve D. Parker researched waste as a resource in the UK agricultural sector in 1982, developing novel closed loop production systems mimicking, and integrated with, the symbiotic biological ecosystems they exploited.

Emergence of the idea

In their 1976 Hannah Reekman research report to the European Commission, "The Potential for Substituting Manpower for Energy", Walter Stahel and Genevieve Reday sketched the vision of an economy in loops (or circular economy) and its impact on job creation, economic competitiveness, resource savings, and waste prevention. The report was published in 1982 as the book Jobs for Tomorrow: The Potential for Substituting Manpower for Energy.[9]

Considered as one of the first pragmatic and credible sustainability think tanks, the main goals of Stahel's institute are product-life extension, long-life goods, reconditioning activities, and waste prevention. It also insists on the importance of selling services rather than products, an idea referred to as the "functional service economy" and sometimes put under the wider notion of "performance economy" which also advocates "more localisation of economic activity".[10]

In broader terms, the circular approach is a framework that takes insights from living systems. It considers that our systems should work like organisms, processing nutrients that can be fed back into the cycle—whether biological or technical—hence the "closed loop" or "regenerative" terms usually associated with it.

The generic circular economy label can be applied to, and claimed by, several different schools of thought, that all gravitate around the same basic principles which they have refined in different ways. The idea itself, which is centred on taking insights from living systems, is hardly a new one and hence cannot be traced back to one precise date or author, yet its practical applications to modern economic systems and industrial processes have gained momentum since the late 1970s, giving birth to four prominent movements, detailed below. Promoting a circular economy was identified as national policy in China's 11th five-year plan starting in 2006.[11] The Ellen MacArthur Foundation has more recently outlined the economic opportunity of a circular economy, bringing together complementary schools of thought in an attempt to create a coherent framework, thus giving the concept a wide exposure and appeal.[12]

Most frequently described as a framework for thinking, its supporters claim it is a coherent model that has value as part of a response to the end of the era of cheap oil and materials, and can contribute to the transition to a low carbon economy. In line with this, a circular economy can contribute to meeting the COP 21 Paris Agreement. The emissions reduction commitments made by 195 countries at the COP 21 Paris Agreement, are not sufficient to limit global warming to 1.5 °C. To reach the 1.5 °C ambition it is estimated that additional emissions reductions of 15 billion tonnes CO2 per year need to be achieved by 2030. Circle Economy and Ecofys estimated that circular economy strategies may deliver emissions reductions that could basically bridge the gap by half.[13]

Sustainability

The circular economy seems intuitively to be more sustainable than the current linear economic system. The reduction of resource inputs into, and waste and emission leakage out of, the system, reduces resource depletion and environmental pollution. However, these simple assumptions are not sufficient to deal with the involved systemic complexity and disregards potential trade-offs. For example, the social dimension of sustainability seems to be only marginally addressed in many publications on the circular economy, and there are cases that require different or additional strategies, like purchasing new, more energy efficient equipment. By reviewing the literature, a team of researchers from Cambridge and TU Delft could show that there are at least eight different relationship types between sustainability and the circular economy:[1]

  1. Conditional relation
  2. Strong conditional relation
  3. Necessary but not sufficient conditional relation
  4. Beneficial relationship
  5. Subset relation (structured and unstructured)
  6. Degree relation
  7. Cost-benefit/trade-off relation
  8. Selective relation

Circular business models

Circular business models[14]

While the initial focus of academic, industry, and policy activities was mainly focused on the development of re-X (recycling, remanufacturing, reuse,...) technology, it soon became clear that the technological capabilities increasingly exceed their implementation. To leverage this technology for the transition towards a Circular Economy, different stakeholders have to work together. This shifted attention towards business model innovation as a key leverage for 'circular' technology adaption.[15]

Circular business models an be defined as business models that are closing, narrowing, slowing, intensifying, and dematerialising loops, to minimise the resource inputs into and the waste and emission leakage out of the organisational system. This comprises recycling measures (closing), efficiency improvements (narrowing), use phase extensions (slowing or extending), a more intense use phase (intensifying), and the substitution of product utility by service and software solutions (dematerialising).[14] As illustrated in the Figure, these five approaches to resource loops can also be seen as generic strategies or archetypes of circular business model innovation.

Circular business models, as the economic model more broadly, can have different emphases and various objectives, for example: extend the life of materials and products, where possible over multiple ‘use cycles’; use a ‘waste = food’ approach to help recover materials, and ensure those biological materials returned to earth are benign, not toxic; retain the embedded energy, water and other process inputs in the product and the material for as long as possible; Use systems-thinking approaches in designing solutions; regenerate or at least conserve nature and living systems; push for policies, taxes and market mechanisms that encourage product stewardship, for example ‘polluter pays’ regulations.[16]

Impact in Europe

On 17 December 2012, the European Commission published a document entitled Manifesto for a Resource Efficient Europe. This manifesto clearly stated that "In a world with growing pressures on resources and the environment, the EU has no choice but to go for the transition to a resource-efficient and ultimately regenerative circular economy."[17] Furthermore, the document highlighted the importance of "a systemic change in the use and recovery of resources in the economy" in ensuring future jobs and competitiveness, and outlined potential pathways to a circular economy, in innovation and investment, regulation, tackling harmful subsidies, increasing opportunities for new business models, and setting clear targets.

The European environmental research and innovation policy aims at supporting the transition to a circular economy in Europe, defining and driving the implementation of a transformative agenda to green the economy and the society as a whole, to achieve a truly sustainable development. Research and innovation in Europe are financially supported by the programme Horizon 2020, which is also open to participation worldwide.[18]

The European Commission introduced a Circular Economy proposal in 2015. Historically, the policy debate in Brussels mainly focused on waste management which is the second half of the cycle, and very little is said about the first half: eco-design. To draw the attention of policymakers and other stakeholders to this loophole, the Ecothis, an EU campaign was launched raising awareness about the economic and environmental consequences of not including eco-design as part of the circular economy package.[19]

Circular Economy Standard BS 8001:2017

To provide authoritative guidance to organisations implementing circular economy (CE) strategies, in 2017, the British Standards Institution (BSI) developed and launched the first circular economy standard "BS 8001:2017 Framework for implementing the principles of the circular economy in organizations. Guide".[20] The circular economy standard BS 8001:2017 tries to align the far-reaching ambitions of the CE with established business routines at the organisational level. It contains a comprehensive list of CE terms and definitions, describes the core CE principles, and presents a flexible management framework for implementing CE strategies in organizations. Little concrete guidance on circular economy monitoring and assessment is given, however, as there is no consensus yet on a set of central circular economy performance indicators applicable to organisations and individual products.[21]

Towards the circular economy

In January 2012, a report was released entitled Towards the Circular Economy: Economic and business rationale for an accelerated transition. The report, commissioned by the Ellen MacArthur Foundation and developed by McKinsey & Company, was the first of its kind to consider the economic and business opportunity for the transition to a restorative, circular model. Using product case studies and economy-wide analysis, the report details the potential for significant benefits across the EU. It argues that a subset of the EU manufacturing sector could realise net materials cost savings worth up to $630 billion annually towards 2025—stimulating economic activity in the areas of product development, remanufacturing and refurbishment. Towards the Circular Economy also identified the key building blocks in making the transition to a circular economy, namely in skills in circular design and production, new business models, skills in building cascades and reverse cycles, and cross-cycle/cross-sector collaboration.[22]

Scope

The circular economy includes products, infrastructure, equipment and services, and applies to every industry sector. It includes 'technical' resources (metals, minerals, fossil resources) and 'biological' resources (food, fibres, timber, etc). Most schools of thought advocate a shift from fossil fuels to the use of renewable energy, and emphasise the role of diversity as a characteristic of resilient and sustainable systems. It includes discussion of the role of money and finance as part of the wider debate, and some of its pioneers have called for a revamp of economic performance measurement tools.

One example of a circular economy model is the implementation of renting models in traditional ownership areas (e.g. electronics, clothes, furniture, transportation). Through renting the same product to several clients, manufacturers can increase revenues per unit, thus decreasing the need to produce more to increase revenues. Recycling initiatives are often described as circular economy and are likely to be the most widespread models.

The various approaches to ‘circular’ business and economic models share several common principles with other conceptual frameworks:

Systems thinking

The ability to understand how things influence one another within a whole. Elements are considered as 'fitting in' their infrastructure, environment and social context.

Biomimicry

Janine Benyus, author of "Biomimicry: Innovation Inspired by Nature", defines Biomimicry as "a new discipline that studies nature's best ideas and then imitates these designs and processes to solve human problems. Studying a leaf to invent a better solar cell is an example. I think of it as "innovation inspired by nature.[23]

Industrial ecology

Industrial Ecology is the study of material and energy flows through industrial systems. Focusing on connections between operators within the "industrial ecosystem", this approach aims at creating closed loop processes in which waste is seen as input, thus eliminating the notion of undesirable by-product.[24]

Cradle to cradle

Created by Walter R. Stahel and similar theorists, in which industry adopts the reuse and service-life extension of goods as a strategy of waste prevention, regional job creation, and resource efficiency in order to decouple wealth from resource consumption.[25][26]

Blue economy

Initiated by former Ecover CEO and Belgian entrepreneur Gunter Pauli, derived from the study of natural biological production processes the official manifesto states, "using the resources available...the waste of one product becomes the input to create a new cash flow".[27]

"The Biosphere Rules"

The Biosphere Rules is a framework for implementing closed loop production processes. They derived from nature systems and translated for industrial production systems. The five principles are Materials Parsimony, Value Cycling, Power Autonomy, Sustainable Product Platforms and Function Over Form.

See also

References

  1. 1 2 3 Geissdoerfer, Martin; Savaget, Paulo; Bocken, Nancy M. P.; Hultink, Erik Jan (2017-02-01). "The Circular Economy – A new sustainability paradigm?". Journal of Cleaner Production. 143: 757–768. doi:10.1016/j.jclepro.2016.12.048.
  2. 1 2 Towards the Circular Economy: an economic and business rationale for an accelerated transition. Ellen MacArthur Foundation. 2012. p. 24.
  3. Boulding, Kenneth E. (March 8, 1966). "The Economics of the Coming Spaceship Earth". Missing or empty |url= (help) In H. Jarrett (ed.) Environmental Quality in a Growing Economy, Resources for the Future, Johns Hopkins University Press, Baltimore, MD, pp. 3-14. Available at Universitat de Barcelona Retrieved 26 August 2018, or dieoff.org Retrieved 26 August 2018.
  4. Allwood, Julian M. (2014). Squaring the Circular Economy. Handbook of Recycling. Elesvier. pp. 445–477. doi:10.1016/b978-0-12-396459-5.00030-1.
  5. David W. Pearce and R. Kerry Turner (1989). Economics of Natural Resources and the Environment. Johns Hopkins University Press. ISBN 978-0801839870.
  6. "A review of the circular economy in China: moving from rhetoric to implementation". Journal of Cleaner Production. 42: 215–227. 2012. doi:10.1016/j.jclepro.2012.11.020. Retrieved 12 February 2016.
  7. Jackson, Tim (1993). Clean Production Strategies Developing Preventive Environmental Management in the Industrial Economy. https://www.crcpress.com/Clean-Production-Strategies-Developing-Preventive-Environmental-Management/Jackson/p/book/9780873718844: CRC Press. ISBN 9780873718844.
  8. Jackson, Tim (1996). Material Concerns — Pollution, Profit and Quality of Life. https://www.routledge.com/Material-Concerns-Pollution-Profit-and-Quality-of-Life/Jackson/p/book/9780415132497: Routledge.
  9. "Cradle to Cradle | The Product-Life Institute". Product-life.org. 2012-11-14. Retrieved 2013-11-20.
  10. Clift & Allwood, "Rethinking the economy", The Chemical Engineer, March 2011
  11. Zhijun, F; Nailing, Y (2007). "Putting a circular economy into practice in China" (PDF). Sustain Sci. 2: 95–101. doi:10.1007/s11625-006-0018-1.
  12. "The Ellen MacArthur Foundation website". Ellenmacarthurfoundation.org. Retrieved 23 January 2013.
  13. Blok, Kornelis; Hoogzaad, Jelmer; Ramkumar, Shyaam; Ridley, Shyaam; Srivastav, Preeti; Tan, Irina; Terlouw, Wouter; de Wit, Terlouw. "Implementing Circular Economy Globally Makes Paris Targets Achievable". Circle Economy. Circle Economy, Ecofys. Retrieved 20 April 2017.
  14. 1 2 Geissdoerfer, Martin; Morioka, Sandra Naomi; de Carvalho, Marly Monteiro; Evans, Steve (April 2018). "Business models and supply chains for the circular economy". Journal of Cleaner Production. doi:10.1016/j.jclepro.2018.04.159. ISSN 0959-6526.
  15. Rashid, Amir; Asif, Farazee M.A.; Krajnik, Peter; Nicolescu, Cornel Mihai (October 2013). "Resource Conservative Manufacturing: an essential change in business and technology paradigm for sustainable manufacturing". Journal of Cleaner Production. 57: 166–177. doi:10.1016/j.jclepro.2013.06.012. ISSN 0959-6526.
  16. Weetman,, Catherine (2016). A circular economy handbook for business and supply chains : repair, remake, redesign, rethink. London, United Kingdom: Kogan Page. p. 25. ISBN 9780749476755. OCLC 967729002.
  17. "Manifesto for a Resource Efficient Europe". European Commission. Retrieved 21 January 2013.
  18. See Horizon 2020 – the EU's new research and innovation programme http://europa.eu/rapid/press-release_MEMO-13-1085_en.htm
  19. "The Ecothis.eu campaign website". ecothis.eu. Retrieved August 3, 2015.
  20. "Developing BS 8001 - a world first". The British Standards Institution. Retrieved 29 December 2017.
  21. Pauliuk, Stefan (2018). "Critical appraisal of the circular economy standard BS 8001:2017 and a dashboard of quantitative system indicators for its implementation in organizations". Resources, Conservation and Recycling. Elsevier BV. 129: 81–92. doi:10.1016/j.resconrec.2017.10.019. ISSN 0921-3449.
  22. Towards the Circular Economy: an economic and business rationale for an accelerated transition. Ellen MacArthur Foundation. 2012. p. 60.
  23. "What is Biomimicry?". Biomimicry Institute. Retrieved 2013-11-20.
  24. "International Society for Industrial Ecology – Home". Is4ie.org. Retrieved 2013-11-20.
  25. Zhong, Shan (2018). "Tightening the loop on the circular economy: Coupled distributed recycling and manufacturing with recyclebot and RepRap 3-D printing". Resources, Conservation and Recycling. 128: 48–58.
  26. Cooper, Tim (2005). "Slower Consumption Reflections on Product Life Spans and the "Throwaway Society"". Journal of Industrial Ecology. 9 (1–2): 51–67. doi:10.1162/1088198054084671 via Willey.
  27. "Blue Economy : Green Economy 2.0". Blueeconomy.de. Retrieved 2013-11-20. (see also www.theblueeconomy.org)
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.