Burkholderia cenocepacia

Burkholderia cenocepacia
Scientific classification
Kingdom: Bacteria
Phylum: Proteobacteria
Class: Betaproteobacteria
Order: Burkholderiales
Family: Burkholderiaceae
Genus: Burkholderia
Species: B. cenocepacia
Binomial name
Burkholderia cenocepacia
Vandamme et al. 2003

Burkholderia cenocepacia, also known as Helycobacter, is a species of Gram-negative bacteria that is common in the environment, can form a biofilm with itself,[1] is resistant to many antibiotics[2] and may cause disease in plants.

Pathogenicity

It is an opportunistic pathogen and human infections are common in patients with cystic fibrosis and chronic granulomatous disease, and are often fatal.[3] In cystic fibrosis, it can cause "cepacia syndrome" which is characterized by a rapidly progressive fever, uncontrolled bronchopneumonia, weight loss, and possibly death. A review of B. cenocepacia in respiratory infections of cystic fibrosis patients stated that "one of the most threatening pathogens in [cystic fibrosis] is Burkholderia cenocepacia, a member of a bacterial group collectively referred to as the Burkholderia cepacia complex (Bcc)".[4] 24 Small RNAs were identified using RNA binding properties of the Hfq protein during the exponential growth phasess.[5] sRNAs identified in Burkholderia cenocepacia KC-0 were upregulated under iron depletion and oxidate stress.[6]

See also: Burkholderia thailandensis sRNA

Taxonomy

Originally defined as B. cepacia, the group has now been split into nine species,[7] and B. cenocepacia is one of the most intensively-studied.[8]

Microbiology

In addition, the strong environmental protection response of B. cenocepacia is attributed to the biofilm formed by groups of the organism,.[2] This biofilm contains exopolysaccharides (abbreviated EPS) that strengthen the bacterium's resistance to antibiotics. The biofilm exopolysaccharides acted as a barrier to neutrophils from human immune resistance systems, undermining the neutrophil defense action by inhibiting chemotaxis and reducing the production of reactive oxygen species[9]

References

  1. Magdolna Csavas; Lenka Malinovska; Florent Perret; Milan Gyurko; Zita Tunde Illyes; Michaela Wimmerova; Aniko Borbas (14 November 2016). "Tri- and tetravalent mannoclusters cross-link and aggregate BC2L-A lectin from Burkholderia cenocepacia". Carbohydrate Research. Elsevier. 437: 1–8. doi:10.1016/j.carres.2016.11.008. PMID 27871013. Burkholderia cenocepacia is a Gram-negative bacterium with the ability to form a biofilm
  2. 1 2 Nida H. Alshraiedeh; Sarah Higginbotham; Padrig B. Flynn; Mahmoud Y. Alkawareek; Michael M. Tunney; Sean P. Gorman; William G. Graham; Brendan F. Gilmore (22 April 2016). "Eradication and phenotypic tolerance of Burkholderia cenocepacia biofilms exposed to atmospheric pressure non-thermal plasma". International Journal of Antimicrobial Agents. 47 (6): 446–450. doi:10.1016/j.ijantimicag.2016.03.004. PMID 27179816. B. cenocepacia can spread from person to person and exhibits intrinsic broad-spectrum antibiotic resistance
  3. Magdolna Csavas; Lenka Malinovska; Florent Perret; Milan Gyurko; Zita Tunde Illyes; Michaela Wimmerova; Aniko Borbas (14 November 2016). "Tri- and tetravalent mannoclusters cross-link and aggregate BC2L-A lectin from Burkholderia cenocepacia". Carbohydrate Research. Elsevier. 437: 1–8. doi:10.1016/j.carres.2016.11.008. It is recognized as an opportunistic human pathogen causing lung infections in immunocompromised individuals, especially in cystic fibrosis patients, with significant mortality and morbidity
  4. P. Drevinkek; E. Mahenthiralingam. "Burkholderia cenocepacia in cystic fibrosis: epidemiology and molecular mechanisms of virulence". Clinical Microbiology and Infection. 16 (7): 821–830. doi:10.1111/j.1469-0691.2010.03237.x. PMID 20880411. Retrieved 6 January 2017.
  5. Ramos, Christian G.; Grilo, André M.; da Costa, Paulo J. P.; Leitão, Jorge H. (February 2013). "Experimental identification of small non-coding regulatory RNAs in the opportunistic human pathogen Burkholderia cenocepacia J2315". Genomics. 101 (2): 139–148. doi:10.1016/j.ygeno.2012.10.006. ISSN 1089-8646. PMID 23142676.
  6. Ghosh, Suparna; Dureja, Chetna; Khatri, Indu; Subramanian, Srikrishna; Raychaudhuri, Saumya; Ghosh, Sagarmoy (2017-11-03). "Identification of novel small RNAs in Burkholderia cenocepacia KC-01 expressed under iron limitation and oxidative stress conditions". Microbiology. doi:10.1099/mic.0.000566. ISSN 1465-2080. PMID 29099689.
  7. Lipuma J (2005). "Update on the Burkholderia cepacia complex". Curr Opin Pulm Med. 11 (6): 528–33. doi:10.1097/01.mcp.0000181475.85187.ed. PMID 16217180.
  8. Mahenthiralingam E, Vandamme P (2005). "Taxonomy and pathogenesis of the Burkholderia cepacia complex". Chron Respir Dis. 2 (4): 209–17. doi:10.1191/1479972305cd053ra. PMID 16541604.
  9. Johann Bylund; Lee-Anna Burgess; Paola Cescutti; Robert K. Ernst; David P. Speert (29 November 2005). "Exopolysaccharides from Burkholderia cenocepacia Inhibit Neutrophil Chemotaxis and Scavenge Reactive Oxygen Species" (PDF). The Journal of Biological Chemistry. 281 (5): 2526–2532. doi:10.1074/jbc.M510692200. PMID 16316987. Retrieved 6 January 2017. We showed that EPS from a clinical B. cenocepacia isolate interfered with the function of human neutrophils in vitro; it inhibited chemotaxis and production of reactive oxygen species (ROS), both essential components of innate neutrophil-mediated host defenses
  • "Burkholderia cenocepacia". NCBI Taxonomy Browser. 95486.
  • Type strain of Burkholderia cenocepacia at BacDive - the Bacterial Diversity Metadatabase
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.