Rectified 8-simplexes


8-simplex

Rectified 8-simplex

Birectified 8-simplex

Trirectified 8-simplex
Orthogonal projections in A8 Coxeter plane

In eight-dimensional geometry, a rectified 8-simplex is a convex uniform 8-polytope, being a rectification of the regular 8-simplex.

There are unique 3 degrees of rectifications in regular 8-polytopes. Vertices of the rectified 8-simplex are located at the edge-centers of the 8-simplex. Vertices of the birectified 8-simplex are located in the triangular face centers of the 8-simplex. Vertices of the trirectified 8-simplex are located in the tetrahedral cell centers of the 8-simplex.

Rectified 8-simplex

Rectified 8-simplex
Typeuniform 8-polytope
Coxeter symbol061
Schläfli symbolt1{37}
r{37} = {36,1}
or
Coxeter-Dynkin diagrams
or
7-faces18
6-faces108
5-faces336
4-faces630
Cells756
Faces588
Edges252
Vertices36
Vertex figure7-simplex prism, {}×{3,3,3,3,3}
Petrie polygonenneagon
Coxeter groupA8, [37], order 362880
Propertiesconvex

E. L. Elte identified it in 1912 as a semiregular polytope, labeling it as S1
8
. It is also called 06,1 for its branching Coxeter-Dynkin diagram, shown as .

Coordinates

The Cartesian coordinates of the vertices of the rectified 8-simplex can be most simply positioned in 9-space as permutations of (0,0,0,0,0,0,0,1,1). This construction is based on facets of the rectified 9-orthoplex.

Images

orthographic projections
Ak Coxeter plane A8 A7 A6 A5
Graph
Dihedral symmetry [9] [8] [7] [6]
Ak Coxeter plane A4 A3 A2
Graph
Dihedral symmetry [5] [4] [3]

Birectified 8-simplex

Birectified 8-simplex
Typeuniform 8-polytope
Coxeter symbol052
Schläfli symbolt2{37}
2r{37} = {35,2} or
Coxeter-Dynkin diagrams
or
7-faces18
6-faces144
5-faces588
4-faces1386
Cells2016
Faces1764
Edges756
Vertices84
Vertex figure{3}×{3,3,3,3}
Coxeter groupA8, [37], order 362880
Propertiesconvex

E. L. Elte identified it in 1912 as a semiregular polytope, labeling it as S2
8
. It is also called 05,2 for its branching Coxeter-Dynkin diagram, shown as .

The birectified 8-simplex is the vertex figure of the 152 honeycomb.

Coordinates

The Cartesian coordinates of the vertices of the birectified 8-simplex can be most simply positioned in 9-space as permutations of (0,0,0,0,0,0,1,1,1). This construction is based on facets of the birectified 9-orthoplex.

Images

orthographic projections
Ak Coxeter plane A8 A7 A6 A5
Graph
Dihedral symmetry [9] [8] [7] [6]
Ak Coxeter plane A4 A3 A2
Graph
Dihedral symmetry [5] [4] [3]

Trirectified 8-simplex

Trirectified 8-simplex
Typeuniform 8-polytope
Coxeter symbol043
Schläfli symbolt3{37}
3r{37} = {34,3} or
Coxeter-Dynkin diagrams
or
7-faces9 + 9
6-faces36 + 72 + 36
5-faces84 + 252 + 252 + 84
4-faces126 + 504 + 756 + 504
Cells630 + 1260 + 1260
Faces1260 + 1680
Edges1260
Vertices126
Vertex figure{3,3}×{3,3,3}
Petrie polygonenneagon
Coxeter groupA7, [37], order 362880
Propertiesconvex

E. L. Elte identified it in 1912 as a semiregular polytope, labeling it as S3
8
. It is also called 04,3 for its branching Coxeter-Dynkin diagram, shown as .

Coordinates

The Cartesian coordinates of the vertices of the trirectified 8-simplex can be most simply positioned in 9-space as permutations of (0,0,0,0,0,1,1,1,1). This construction is based on facets of the trirectified 9-orthoplex.

Images

orthographic projections
Ak Coxeter plane A8 A7 A6 A5
Graph
Dihedral symmetry [9] [8] [7] [6]
Ak Coxeter plane A4 A3 A2
Graph
Dihedral symmetry [5] [4] [3]

This polytope is the vertex figure of the 9-demicube, and the edge figure of the uniform 261 honeycomb.

It is also one of 135 uniform 8-polytopes with A8 symmetry.

Notes

    References

    • H.S.M. Coxeter:
      • H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
      • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6
        • (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
        • (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
        • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
    • Norman Johnson Uniform Polytopes, Manuscript (1991)
      • N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D.
    • Klitzing, Richard. "8D Uniform polytopes (polyzetta)". o3x3o3o3o3o3o3o - rene, o3o3x3o3o3o3o3o - brene, o3o3o3x3o3o3o3o - trene
    Fundamental convex regular and uniform polytopes in dimensions 2–10
    Family An Bn I2(p) / Dn E6 / E7 / E8 / F4 / G2 Hn
    Regular polygon Triangle Square p-gon Hexagon Pentagon
    Uniform polyhedron Tetrahedron OctahedronCube Demicube DodecahedronIcosahedron
    Uniform 4-polytope 5-cell 16-cellTesseract Demitesseract 24-cell 120-cell600-cell
    Uniform 5-polytope 5-simplex 5-orthoplex5-cube 5-demicube
    Uniform 6-polytope 6-simplex 6-orthoplex6-cube 6-demicube 122221
    Uniform 7-polytope 7-simplex 7-orthoplex7-cube 7-demicube 132231321
    Uniform 8-polytope 8-simplex 8-orthoplex8-cube 8-demicube 142241421
    Uniform 9-polytope 9-simplex 9-orthoplex9-cube 9-demicube
    Uniform 10-polytope 10-simplex 10-orthoplex10-cube 10-demicube
    Uniform n-polytope n-simplex n-orthoplexn-cube n-demicube 1k22k1k21 n-pentagonal polytope
    Topics: Polytope familiesRegular polytopeList of regular polytopes and compounds
    This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.