Bessel potential

In mathematics, the Bessel potential is a potential (named after Friedrich Wilhelm Bessel) similar to the Riesz potential but with better decay properties at infinity.

If s is a complex number with positive real part then the Bessel potential of order s is the operator

where Δ is the Laplace operator and the fractional power is defined using Fourier transforms.

Yukawa potentials are particular cases of Bessel potentials for in the 3-dimensional space.

Representation in Fourier space

The Bessel potential acts by multiplication on the Fourier transforms: for each

Integral representations

When , the Bessel potential on can be represented by

where the Bessel kernel is defined for by the integral formula [1]

Here denotes the Gamma function. The Bessel kernel can also be represented for by[2]

Asymptotics

At the origin, one has as ,[3]

In particular, when the Bessel potential behaves asymptotically as the Riesz potential.

At infinity, one has, as , [4]

See also

References

  1. Stein, Elias (1970). Singular integrals and differentiability properties of functions. Princeton University Press. Chapter V eq. (26). ISBN 0-691-08079-8.
  2. N. Aronszajn; K. T. Smith (1961). "Theory of Bessel potentials I". Ann. Inst. Fourier. 11. 385–475, (4,2).
  3. N. Aronszajn; K. T. Smith (1961). "Theory of Bessel potentials I". Ann. Inst. Fourier. 11. 385–475, (4,3).
  4. N. Aronszajn; K. T. Smith (1961). "Theory of Bessel potentials I". Ann. Inst. Fourier. 11: 385–475.
  • Duduchava, R. (2001) [1994], "Bessel potential operator", in Hazewinkel, Michiel, Encyclopedia of Mathematics, Springer Science+Business Media B.V. / Kluwer Academic Publishers, ISBN 978-1-55608-010-4
  • Grafakos, Loukas (2009), Modern Fourier analysis, Graduate Texts in Mathematics, 250 (2nd ed.), Berlin, New York: Springer-Verlag, doi:10.1007/978-0-387-09434-2, ISBN 978-0-387-09433-5, MR 2463316
  • Hedberg, L.I. (2001) [1994], "Bessel potential space", in Hazewinkel, Michiel, Encyclopedia of Mathematics, Springer Science+Business Media B.V. / Kluwer Academic Publishers, ISBN 978-1-55608-010-4
  • Solomentsev, E.D. (2001) [1994], "B/b015870", in Hazewinkel, Michiel, Encyclopedia of Mathematics, Springer Science+Business Media B.V. / Kluwer Academic Publishers, ISBN 978-1-55608-010-4
  • Stein, Elias (1970), Singular integrals and differentiability properties of functions, Princeton, NJ: Princeton University Press, ISBN 0-691-08079-8
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.