1024 (number)

1023 1024 1025
0 [[{{#expr:{{{1}}}*{{{factor}}}*1000}} (number)|{{#ifeq:{{{1}}}|10|→|{{#expr:{{{1}}}*{{{factor}}}}}k}}]] [[{{#expr:{{{1}}}*{{{factor}}}*1000}} (number)|{{#ifeq:{{{1}}}|10|→|{{#expr:{{{1}}}*{{{factor}}}}}k}}]] [[{{#expr:{{{1}}}*{{{factor}}}*1000}} (number)|{{#ifeq:{{{1}}}|10|→|{{#expr:{{{1}}}*{{{factor}}}}}k}}]] [[{{#expr:{{{1}}}*{{{factor}}}*1000}} (number)|{{#ifeq:{{{1}}}|10|→|{{#expr:{{{1}}}*{{{factor}}}}}k}}]] [[{{#expr:{{{1}}}*{{{factor}}}*1000}} (number)|{{#ifeq:{{{1}}}|10|→|{{#expr:{{{1}}}*{{{factor}}}}}k}}]] [[{{#expr:{{{1}}}*{{{factor}}}*1000}} (number)|{{#ifeq:{{{1}}}|10|→|{{#expr:{{{1}}}*{{{factor}}}}}k}}]] [[{{#expr:{{{1}}}*{{{factor}}}*1000}} (number)|{{#ifeq:{{{1}}}|10|→|{{#expr:{{{1}}}*{{{factor}}}}}k}}]] [[{{#expr:{{{1}}}*{{{factor}}}*1000}} (number)|{{#ifeq:{{{1}}}|10|→|{{#expr:{{{1}}}*{{{factor}}}}}k}}]] [[{{#expr:{{{1}}}*{{{factor}}}*1000}} (number)|{{#ifeq:{{{1}}}|10|→|{{#expr:{{{1}}}*{{{factor}}}}}k}}]] [[{{#expr:{{{1}}}*{{{factor}}}*1000}} (number)|{{#ifeq:{{{1}}}|10|→|{{#expr:{{{1}}}*{{{factor}}}}}k}}]]
Cardinal one thousand twenty-four
Ordinal 1024th
(one thousand twenty-fourth)
Factorization 210
Divisors 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024
Greek numeral ,ΑΚΔ´
Roman numeral MXXIV
Binary 100000000002
Ternary 11012213
Quaternary 1000004
Quinary 130445
Senary 44246
Octal 20008
Duodecimal 71412
Hexadecimal 40016
Vigesimal 2B420
Base 36 SG36
The number 1024 in a treatise on binary numbers by Leibniz (1697).

1024 is the natural number following 1023 and preceding 1025.

1024 is a power of two: (2 to the 10th power).[1] It is the lowest power of two requiring four decimal digits, and the lowest power of two containing the digit 0 in its decimal representation (excluding any leading zeroes).

It is also the square of 32: .

1024 is the smallest number with exactly 11 divisors (but note that there are smaller numbers with more than 11 divisors; e.g., 60 has 12 divisors) (sequence A005179 in the OEIS).

Approximation to 1000

The neat coincidence that 210 is nearly equal to 103 provides the basis of a technique of estimating larger powers of 2 in decimal notation. Using 210a+b ≈ 2b103a is fairly accurate for exponents up to about 100. For exponents up to 300, 3a continues to be a good estimate of the number of digits.

For example, 253 ≈ 8×1015. The actual value is closer to 9×1015.

In the case of larger exponents the relationship becomes increasingly more inaccurate with errors exceeding an order of magnitude for , for example:

In measuring bytes, 1024 is often used in place of 1000 as the quotients of the units byte, kilobyte, megabyte, etc. In 1999, the IEC coined the term kibibyte for multiples of 1024, with kilobyte being used for multiples of 1000.

Special use in computers

In binary notation, 1024 is represented as 10000000000, making it a simple round number occurring frequently in computer applications.

1024 is the maximum number of computer memory addresses that can be referenced with ten binary switches. This is the origin of the organization of computer memory into 1024-byte chunks or kibibytes.

In the Rich Text Format (RTF), language code 1024 indicates the text is not in any language and should be skipped over when proofing. Most used languages codes in RTF are integers slightly over 1024.

1024×768 pixels and 1280×1024 pixels are common standards of display resolution.

See also

References

  1. Bryan Bunch, The Kingdom of Infinite Number. New York: W. H. Freeman & Company (2000): 170
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.