Virtual machine escape

In computer security, virtual machine escape is the process of breaking out of a virtual machine and interacting with the host operating system.[1] A virtual machine is a "completely isolated guest operating system installation within a normal host operating system".[2] In 2008, a vulnerability (CVE-2008-0923) in VMware discovered by Core Security Technologies made VM escape possible on VMware Workstation 6.0.2 and 5.5.4.[3][4] A fully working exploit labeled Cloudburst was developed by Immunity Inc. for Immunity CANVAS (commercial penetration testing tool).[5] Cloudburst was presented in Black Hat USA 2009.[6]

Previous known vulnerabilities

  • CVE-2007-1744 Directory traversal vulnerability in shared folders feature for VMware
  • CVE-2008-0923 Directory traversal vulnerability in shared folders feature for VMware
  • CVE-2009-1244 Cloudburst: VM display function in VMware
  • CVE-2012-0217 The x86-64 kernel system-call functionality in Xen 4.1.2 and earlier
  • CVE-2014-0983 Oracle VirtualBox 3D acceleration multiple memory corruption
  • CVE-2015-3456 VENOM: buffer-overflow in QEMU's virtual floppy disk controller
  • CVE-2015-7835 Xen Hypervisor: Uncontrolled creation of large page mappings by PV guests
  • CVE-2016-6258 Xen Hypervisor: The PV pagetable code has fast-paths for making updates to pre-existing pagetable entries, to skip expensive re-validation in safe cases (e.g. clearing only Access/Dirty bits). The bits considered safe were too broad, and not actually safe.
  • CVE-2016-7092 Xen Hypervisor: Disallow L3 recursive pagetable for 32-bit PV guests
  • CVA-2017-5715, 2017-5753, 2017-5754: The Spectre and Meltdown hardware vulnerabilities, a cache side-channel attack on CPU level (Rogue Data Cache Load (RDCL)), allow a rogue process to read all memory of a computer, even outside the memory assigned to a virtual machine
  • CVE-2017-0075 Hyper-V Remote Code Execution Vulnerability
  • CVE-2017-0109 Hyper-V Remote Code Execution Vulnerability
  • CVE-2017-4903 VMware ESXi, Workstation, Fusion: SVGA driver contains buffer overflow that may allow guests to execute code on hosts[7]
  • CVE-2017-4934 VMware Workstation, Fusion: Heap buffer-overflow vulnerability in VMNAT device that may allow a guest to execute code on the host[8]
  • CVE-2017-4936 VMware Workstation, Horizon View : Multiple out-of-bounds read issues via Cortado ThinPrint may allow a guest to execute code or perform a Denial of Service on the Windows OS[8]
  • CVE-2018-2698 Oracle VirtualBox: shared memory interface by the VGA allows read and writes on the host OS[9]
  • CVE-2018-12126, CVE-2018-12130, CVE-2018-12127, CVE-2019-11091: "Microarchitectural Data Sampling" (MDS) attacks: Similar to above Spectre and Meltdown attacks, this cache side-channel attack on CPU level allows to read data across VMs and even data of the host system. Sub types: Microarchitectural Store Buffer Data Sampling (MSBDS), Microarchitectural Fill Buffer Data Sampling (MFBDS) = Zombieload, Microarchitectural Load Port Data Sampling (MLPDS), and Microarchitectural Data Sampling Uncacheable Memory (MDSUM)
  • CVE-2019-18420, CVE-2019-18421, CVE-2019-18422, CVE-2019-18423, CVE-2019-18424, CVE-2019-18425: Xen Hypervisor and Citrix Hypervisor: Allows guest virtual machines to compromise the host system (denial of service and rights escalation) [10]
  • CVE-2019-0964 (critical), CVE-2019-5124, CVE-2019-5146, CVE-2019-5147: Windows 10 and VMWare Workstation using AMD Radeon graphics cards using Adrenalin driver: attacker in guest system can use pixel shader to cause memory error on the host system, injecting malicious code to the host system and execute it.[11]
  • CVE-2018-12130, CVE-2019-11135, CVE-2020-0548: ZombieLoad, ZombieLoad v2, Vector Register Sampling (VRS), Microarchitectural Data Samping (MDS), Transactional Asynchronous Abort (TAA), CacheOut, L1D Eviction Sampling (L1DES): L1 cache side attacks on CPU level allow virtual machines to read memory outside of their sandbox[12]
  • CVE-2020-3962, CVE-2020-3963, CVE-2020-3964, CVE-2020-3965, CVE-2020-3966, CVE-2020-3967, CVE-2020-3968, CVE-2020-3969, CVE-2020-3970, CVE-2020-3971: VMware ESXi, Workstation Pro / Player, Fusion Pro, Cloud Foundation: Vulnerabilities in SVGA, graphics shader, USB driver, xHCI/EHCI, PVNVRAM, and vmxnet3 can cause virtual machine escape[13]

See also

References

  1. "What is VM Escape? - The Lone Sysadmin". 22 September 2007.
  2. "Virtual Machines: Virtualization vs. Emulation". Retrieved 2011-03-11.
  3. "Path Traversal vulnerability in VMware's shared folders implementation". 18 May 2016.
  4. Dignan, Larry. "Researcher: Critical vulnerability found in VMware's desktop apps - ZDNet".
  5. "Security Monitoring News, Analysis, Discussion, & Community". Dark Reading.
  6. "Black Hat ® Technical Security Conference: USA 2009 // Briefings". www.blackhat.com.
  7. "VMSA-2017-0006". VMware.
  8. "VMSA-2017-0018.1". VMware.
  9. "CVE-2018-2698". securiteam.com: Oracle VirtualBox Multiple Guest to Host Escape Vulnerabilities.
  10. "CVE-2019-18420 to 18425". Patches beheben Schwachstellen in Xen und Citrix Hypervisor.
  11. "CVE-2019-0964 (critical), CVE-2019-5124, CVE-2019-5146, CVE-2019-5147". Sicherheitsupdate: AMD-Treiber und VMware.
  12. [Microarchitectural Data Samping (MDS) und Transactional Asynchronous Abort (TAA) "CVE-2018-12130, CVE-2019-11135, CVE-2020-0548"] Check |url= value (help). Sicherheitslücken in Intel-CPUs: Modifizierte Angriffe erfordern BIOS-Updates.
  13. "CVE-2020-3962, CVE-2020-3963, CVE-2020-3964, CVE-2020-3965, CVE-2020-3966, CVE-2020-3967, CVE-2020-3968, CVE-2020-3969, CVE-2020-3970, CVE-2020-3971". VMWare Advisory VMSA-2020-0015.1.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.