Ulrich Kortz

Ulrich "Uli" Kortz is a German chemist and professor, working in the area of synthetic polyoxometalate chemistry.

Ulrich Kortz
Professor Ulrich Kortz in Bremen
Born (1963-06-08) 8 June 1963
NationalityGerman
Alma materGeorgetown University
Known forstructural inorganic chemistry, polyoxometalate chemistry
AwardsHarold N. Glassman award; Alfred Kastler postdoctoral fellowship;
Scientific career
FieldsChemistry
InstitutionsAmerican University of Beirut, Jacobs University
Doctoral advisorMichael Thor Pope

Biography

Ulrich Kortz obtained his education in Chemical Engineering in the period 1982-1989 and was awarded his Diplom from Darmstadt University of Applied Sciences. In the period of 1989-1995 he was working on his doctorate degree at Georgetown University in Washington, DC, under close supervision of Michael T. Pope. He spent his postdoctoral years with Dante Gatteschi at Florence University, Italy, from 1995 to 1996, and with Andre Tézé and Gilbert Hervé at Versailles University, France, from 1996 to 1997. In 1997 he was hired as assistant professor at the American University of Beirut in Lebanon, and he was promoted to associate professor in 2001. In 2002 he returned to Germany to join the newly established International University Bremen, now Jacobs University Bremen, as associate professor and he was promoted to full professor in 2007.

Highlights

The Kortz group (“The POM Lab”) has discovered the class of polyoxopalladates(II) in 2008 with the synthesis of {Pd13As8},[1][2] and the class of polyoxoaurates(III) in 2010 with the synthesis of {Au4As4}.[3] Ever since they have systematically developed the field of polyoxo-noble-metalates further.[4][5] They have also pioneered the chemistry of the wheel-shaped {P8W48} by preparing {Cu20P8W48}, which contains a highly symmetrical Cu20 core with copper(II) ions in three different coordination geometries,[6] and another highlight example was {Fe16P8W48}.[7] Kortz and his team have also discovered the dilacunary heteropolytungstate {GeW10} in 2006,[8] and systematically explored its reactivity towards transition metal ions.[9] They have also explored the reactivity of many other lacunary heteropolytungstates with d and f block metal ions, two highlight products being {Mn19Si6W60}[10] and {Ce20Ge10W100}.[11][12] The Kortz group has also reported on POMs with interesting magnetic properties.[13][14] In the area of catalysis, they have reported mainly on olefin epoxidation,[15] alkane/alkene oxidation,[16] as well as oxidative[17] and reductive[18] water splitting. Finally, they are also interested in the biological properties of POMs.[19][20][21][22]

References

  1. Self Assembly of a Heteropolyoxopalladate Nanocube, [PdII13AsV8O34(OH)6]8-Chubarova, E. V.; Dickman, M. H.; Keita, B.; Nadjo, L.; Mifsud, M.; Arends, I. W. C. E.; Kortz, U. Angew. Chem. Int. Ed. 2008, 47, 9542-9546.
  2. Goloboy, J. C.; Klemperer, W. G. "Are Particulate Noble-Metal Catalysts Metals, Metal Oxides, or Something In-Between?" Angew. Chem. Int. Ed. 2009, 48, 20, 3562–3564.
  3. Polyoxometalates made of Gold: The Polyoxoaurate [AuIII4AsV4O20]8- Izarova, N. V.; Vankova, N.; Heine, T.; Ngo Biboum, R.; Keita, B.; Nadjo, L.; Kortz, U., Angew. Chem. Int. Ed. 2010, 49, 1886-1889.
  4. Noble Metals in Polyoxometalates Izarova, N. V.; Pope, M. T.; Kortz, U. Angew. Chem. Int. Ed. 2012, 51, 9492-9510.
  5. Discovery and Evolution of Polyoxopalladates Yang, P.; Kortz, U. Acc. Chem. Res. 2018, 51, 1599-1608.
  6. The Wheel-Shaped Cu20-Tungstophosphate [Cu20Cl(OH)24(H2O)12(P8W48O184)]25- Ion Mal, S. S.; Kortz, U. Angew. Chem. Int. Ed. 2005, 44, 3777-3780.
  7. Nucleation process in the cavity of a 48-tungstophosphate wheel resulting in a 16 metal center iron-oxide nanocluster Mal, S. S.; Dickman, M. H.; Kortz, U.; Todea, A. M.; Merca, A.; Bögge, H.; Glaser, T.; Müller, A.; Nellutla, S.; Kaur, N.; van Tol, J.; Dalal, N. S.; Keita, B.; Nadjo, L. Chem. Eur. J. 2008, 14, 1186-1195. ("Dedicated to Professor Jerry Atwood on the occasion of his 65th birthday").
  8. Synthesis and Structure of Dilacunary Decatungstogermanate, [?-GeW10O36]8- Nsouli, N.H.; Bassil, B.S.; Dickman, M.H.; Kortz; U.; Keita, B.; Nadjo, L. Inorg. Chem., 2006, 45, 3858-3860.
  9. Divacant Polyoxotungstates: Reactivity of the gamma-Decatungstates [?-XW10O36]8- (X = Si, Ge) Bassil, B. S.; Kortz, U. Dalton Trans. 2011, 40, 9649-9661.
  10. A Planar {Mn19(OH)12}26+ Assembly Incorporated in 60-Tungsto-6-Silicate Polyanion Bassil, B. S.; Ibrahim, M.; Al-Oweini, R.; Asano, M.; Wang, Z.; van Tol, J.; Dalal, N. S.; Choi, K.-Y.; Ngo Biboum, R.; Keita, B.; Nadjo, L.; Kortz, U. Angew. Chem. Int. Ed. 2011, 50, 5961-5964.
  11. The Tungstogermanate [Ce20Ge10W100O376(OH)4(H2O)30]56-: A Polyoxometalate Containing 20 Cerium(III) Atoms Bassil, B. S.; Dickman, M. H.; Römer, I.; von der Kammer, B.; Kortz, U. Angew. Chem. Int. Ed., 2007, 46, 6192-6195.
  12. Recent Advances in Lanthanide-Containing Polyoxotungstates Bassil, B. S.; Kortz, U., Z. Anorg. Allg. Chem. 2010, 636, 2222-2231.
  13. Polyoxometalates: Fascinating Structures, Unique Magnetic Properties Kortz, U.; Müller, A.; van Slageren, J.; Schnack, J.; Dalal, N. S.; Dressel, M. Coord. Chem. Rev. 2009, 253, 2315-2327. ("In memoriam Dr. Karlheinz Schmidt.").
  14. Synthesis, Detailed Characterization, and Theoretical Understanding of Mononuclear Chromium(III)-Containing Polyoxotungstates [CrIII(HXVW7O28)2]13- (X = P, As) with Exceptionally Large Magnetic Anisotropy Liu, W.; Christian, J. H.; Al-Oweini, R.; Bassil, B. S.; van Tol, J.; Atanasov, M.; Neese, F.; Dalal, N. S.; Kortz, U. Inorg. Chem. 2014, 53, 9274-9283.
  15. Mechanistic Insights into Alkene Epoxidation with H2O2 by Ti- and other TM-containing Polyoxometalates: Role of the Metal Nature and Coordination Environment Antonova, N. S.; Carbó, J. J.; Kortz, U.; Kholdeeva, O. A.; Poblet, J. M. J. Am. Chem. Soc. 2010, 132, 7488-7497.
  16. Organo-Ruthenium Supported Heteropolytungstates: Synthesis, Structure, Electrochemistry and Oxidation Catalysis Bi, L.-H.; Al-Kadamany, G.; Chubarova, E. V.; Dickman, M. H.; Chen, L.; Gopala, D. S.; Richards, R. M.; Keita, B.; Nadjo, L.; Jaensch, H.; Mathys, G.; Kortz, U. Inorg. Chem. 2009, 48, 10068-10077.
  17. Photocatalytic Water Oxidation by a Mixed-Valent MnIII3MnIVO3 Manganese-Oxo-Core that Mimicks the Natural Oxygen Evolving Center Al-Oweini, R.; Sartorel, A.; Bassil, B. S.; Natali, M.; Berardi, S.; Scandola, F.; Kortz, U.; Bonchio, M. Angew. Chem. Int. Ed. 2014, 53, 11182-11185.
  18. Enhanced proton and electron reservoir abilities
  19. Tetra-Antimony(III)-Bridged 18-Tungsto-2-Arsenates(V), [(LSbIII)4(A-a-AsVW9O34)2]10- (L = Ph, OH): Turning Bioactivity On and Off by Ligand Substitution Yang, P.; Lin, Z.; Bassil, B. S.; Alfaro-Espinoza, G.; Ullrich, M. S.; Li, M.-X.; Silvestru, C.; Kortz, U. Inorg. Chem. 2016, 55, 3718-3720.
  20. Polyoxometalates - potent and selective ecto-nucleotidase inhibitors Lee, S.-Y.; Fiene, A.; Li, W.; Hank, T.; Brylev, K.; Fedovrov, V.; Lecka, J.; Haider, A.; Pietzsch, H.-J.; Zimmermann, H.; Sévigny, J.; Kortz, U,; Stephan, H.; Müller, C. E. Biochem. Pharmacol. 2015, 93, 171-181.
  21. Hen Egg White Lysozyme Crystallisation: Protein Stacking and Structure Stability Enhanced by a Tellurium(VI)-Centered Polyoxotungstate Bijelic, A.; Molitor, C.; Mauracher, S. G.; Al-Oweini, R.; Kortz, U.; Rompel, A. ChemBioChem. 2015, 16, 233-241.
  22. Mechanism of Polyoxometalate-Mediated Inactivation of DNA Polymerases: an Analysis with HIV-1 Reverse Transcriptase Indicates Specificity for the DNA-Binding Cleft Sarafianos, S. G.; Kortz, U.; Pope, M. T.; Modak, M. J. Biochem. J. 1996, 319, 619-626.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.