Two-stroke diesel engine

A two-stroke diesel engine is a Diesel engine that works in two strokes. It was invented by Hugo Güldner in 1899.[1]

Nordberg two-stroke radial diesel engine formerly used in a pumping station at Lake Okeechobee

All diesel engines use compression ignition, a process by which fuel is injected after the air is compressed in the combustion chamber, thereby causing the fuel to self-ignite. By contrast, gasoline engines utilize the Otto cycle, or, more recently, the Atkinson cycle, in which fuel and air are mixed before entering the combustion chamber and then ignited by a spark plug.

History

According to the designer of the first operational Diesel engine, Imanuel Lauster, Diesel never intended using the two-stroke principle for the Diesel engine. It is believed, that Hugo Güldner invented the two-stroke Diesel engine. He designed the first operational two-stroke Diesel engine in 1899, and he convinced MAN, Krupp and Diesel to fund building this engine with 10,000 each.[2] Güldner's engine had a 175 mm work cylinder, and a 185 mm scavenging cylinder; both had a stroke of 210 mm. The indicated power output was 12 PS (8826 W).[3] In February 1900, this engine ran under its own power for the first time. However, with its actual power output of only 6.95 PS (5112 W) and high fuel consumption of 380 g·PS1·h1 (517 g·kW1·h1), it did not prove to be successful;[4] Güldner's two-stroke Diesel engine project was abandoned in 1901.[5]

In 1908, MAN Nürnberg offered single-acting piston two-stroke Diesel engines for marine use,[6] the first double-acting piston engine from MAN Nürnberg was made in 1912 for an electric power plant.[7] In collaboration with Blohm + Voss in Hamburg, MAN Nürnberg built the first double-acting piston two-stroke engine for marine use in 1913/1914.[8] During World War I, MAN Nürnberg built a six-cylinder, double-acting piston, two-stroke Diesel engine with a rated power of 12,400 PS (9120 kW).[6] MAN moved their two-stroke Diesel engine department from Nürnberg to Augsburg in 1919.[9]

Charles F. Kettering and colleagues, working at the General Motors Research Corporation and GM's subsidiary Winton Engine Corporation during the 1930s, advanced the art and science of two-stroke diesel technology to yield engines with much higher power-to-weight ratios and output range than contemporary four-stroke diesels. The first mobile application of two-stroke diesel power was with the diesel streamliners of the mid-1930s and continued development work resulted in improved two-stroke diesels for locomotive and marine applications in the late 1930s. This work laid the foundation for the dieselisation of railroads in the 1940s and 1950s.[10]

Two strokes

Cutaway model of a MAN B&W two-stroke marine diesel engine with the piston rod attached to a crosshead

Two-stroke internal combustion engines are simpler mechanically than four-stroke engines, but more complex in thermodynamic and aerodynamic processes, according to SAE definitions. In a two-stroke engine, the four "cycles" of internal combustion engine theory (intake, compression, ignition, exhaust) occur in one revolution, 360 mechanical degrees, whereas in a four-stroke engine these occur in two complete revolutions, 720 mechanical degrees. In a two-stroke engine, more than one function occurs at any given time during the engine's operation.

  • Intake begins when the piston is near the bottom dead center. Air is admitted to the cylinder through ports in the cylinder wall (there are no intake valves). All two-stroke Diesel engines require artificial aspiration to operate, and will either use a mechanically driven blower or a turbo-compressor to charge the cylinder with air. In the early phase of intake, the air charge is also used to force out any remaining combustion gases from the preceding power stroke, a process referred to as scavenging.
  • As the piston rises, the intake charge of air is compressed. Near top dead center, fuel is injected, resulting in combustion due to the charge's extremely high pressure and heat created by compression, which drives the piston downward. As the piston moves downward in the cylinder, it will reach a point where the exhaust port is opened to expel the high-pressure combustion gasses. However, most current two-stroke diesel engines use top-mounted poppet valves and uniflow scavenging. Continued downward movement of the piston will expose the air intake ports in the cylinder wall, and the cycle will start again.

In most EMD and GM (i.e. Detroit Diesel) two-stroke engines, very few parameters are adjustable and all the remaining ones are fixed by the mechanical design of the engines. The scavenging ports are open from 45 degrees before BDC, to 45 degrees after BDC (this parameter is necessarily symmetrical about BDC in piston-ported engines). The remaining, adjustable, parameters have to do with exhaust valve and injection timing (these two parameters are not necessarily symmetrical about TDC or, for that matter, BDC), they are established to maximize combustion gas exhaust and to maximize charge air intake. A single camshaft operates the poppet-type exhaust valves and the Unit injector, using three lobes: two lobes for exhaust valves (either two valves on the smallest engines or four valves on the largest, and a third lobe for the unit injector).

Specific to EMD two-stroke engines (567, 645, and 710):

  • The power stroke begins at TDC ([0°]; injection of fuel leads TDC by 4° [356°], such that injection of fuel will be completed by TDC or very shortly thereafter; the fuel ignites as fast as it is injected), after the power stroke the exhaust valves are opened, thereby greatly reducing combustion gas pressure and temperature, and preparing the cylinder for scavenging, for a power stroke duration of 103°.
  • Scavenging begins 32° later, at BDC–45° [135°], and ends at BDC+45° [225°], for a scavenging duration of 90 degrees; the 32° delay in opening the scavenging ports (constraining the length of the power stroke), and the 16° delay after the scavenging ports are closed (thereby initiating the compression stroke), maximizes scavenging effectiveness, thereby maximizing engine power output, while minimizing engine fuel consumption.
  • Towards the end of scavenging, all products of combustion have been forced out of the cylinder, and only "charge air" remains (scavenging may be accomplished by Roots blowers, for charge air induction at slightly above ambient, or EMD's proprietary turbo-compressor, which acts as a blower during start-up and as a turbocharger under normal operational conditions, and for charge air induction at significantly above ambient,[lower-roman 1] and which turbocharging provides a 50-percent maximum rated power increase over Roots-blown engines of the same displacement).
  • The compression stroke begins 16° later, at BDC+61° [241°], for a compression stroke duration of 119°.
  • In EFI-equipped engines, the electronically-controlled unit injector is still actuated mechanically; the amount of fuel fed into the plunger-type injector pump is under the control of the engine control unit (in locomotives, locomotive control unit), rather than the traditional Woodward PGE governor, or equivalent engine governor, as with conventional unit injectors.

Specific to GM two-stroke (6-71) and related on-road/off-road/marine two-stroke engines:

  • The same basic considerations are employed (the GM/EMD 567 and the GM/Detroit Diesel 6-71 engines were designed and developed at the same time, and by the same team of engineers and engineering managers).
  • Whereas some EMD and Detroit Diesel engines employ turbocharging, only such EMD engines employ a turbo-compressor system; such Detroit Diesel engines employ a conventional turbocharger, in some cases with intercooling, followed by the usual Roots blower, as a turbo-compressor system would be too costly for these very cost-sensitive and highly competitive applications.

Notable manufacturers

Brons two-stroke V8 Diesel engine driving a Heemaf generator
  • Burmeister & Wain (part of MAN Diesel since 1980), double-acting diesels for marine propulsion from 1930 onwards, also made by shipbuilders under licence
  • Detroit Diesel, uniflow[11] engines for on- and off-road trucks, on-road buses and stationary applications
  • Doxford, opposed piston slow speed marine diesel engines.
  • Electro-Motive Diesel, uniflow diesel engines for marine, railway and stationary applications
  • Fairbanks-Morse, opposed-piston diesel engines for marine and stationary applications. An upscaled unlicensed copy of the Junkers Jumo 205 aero engine.
  • Foden, FD series of diesel engines for commercial vehicle, marine and industrial power.
  • Junkers, patent from 1892, opposed piston design for stationary, marine and automotive (single crankshaft) engines, later aircraft usage with dual crankshaft layout (Junkers Jumo 205).
  • Gray Marine, uniflow diesel engines for marine applications
  • MAN Diesel & Turbo, crosshead diesel engines for marine propulsion
  • Mitsubishi Heavy Industries, crosshead diesel engines for marine propulsion
  • Napier & Son, Napier Deltic and Napier Culverin opposed-piston valveless, supercharged uniflow scavenged, two-stroke Diesel engines. Starting out with licensed Junkers Jumo 205 derivative.
  • Rootes Group, the Commer TS3 engine for trucks
  • Wärtsilä, crosshead diesel engines for marine propulsion

Bibliography

Works cited

  • Sloan, Alfred P. (1964), McDonald, John (ed.), My Years with General Motors, Garden City, NY, US: Doubleday, LCCN 64011306, OCLC 802024. Republished in 1990 with a new introduction by Peter Drucker (ISBN 978-0385042352).

Further reading

Notes

  1. Horsepower for naturally aspirated engines (including Roots-blown two-stroke engines) is usually derated 2.5% per 1,000 feet (300 m) above mean sea level, a tremendous penalty at the 10,000 feet (3,000 m) or greater elevations, which several Western U.S. and Canada railroads operate, and this can amount to a 25% power loss. Turbocharging effectively eliminates this derating

References

  1. Günter Mau: Handbuch Dieselmotoren im Kraftwerks- und Schiffsbetrieb, Springer-Vieweg, Braunschweig/Wiesbaden 1984, ISBN 978-3-528-14889-8. p. 7
  2. Friedrich Sass: Geschichte des deutschen Verbrennungsmotorenbaus von 1860 bis 1918, Springer, Berlin/Heidelberg 1962, ISBN 978-3-662-11843-6. p. 502
  3. Friedrich Sass: Geschichte des deutschen Verbrennungsmotorenbaus von 1860 bis 1918, Springer, Berlin/Heidelberg 1962, ISBN 978-3-662-11843-6. p. 503
  4. Friedrich Sass: Geschichte des deutschen Verbrennungsmotorenbaus von 1860 bis 1918, Springer, Berlin/Heidelberg 1962, ISBN 978-3-662-11843-6. p. 504
  5. Friedrich Sass: Geschichte des deutschen Verbrennungsmotorenbaus von 1860 bis 1918, Springer, Berlin/Heidelberg 1962, ISBN 978-3-662-11843-6. p. 505
  6. Günter Mau: Handbuch Dieselmotoren im Kraftwerks- und Schiffsbetrieb, Springer-Vieweg, Braunschweig/Wiesbaden 1984, ISBN 978-3-528-14889-8. p. 16
  7. Günter Mau: Handbuch Dieselmotoren im Kraftwerks- und Schiffsbetrieb, Springer-Vieweg, Braunschweig/Wiesbaden 1984, ISBN 978-3-528-14889-8. p. 9
  8. Günter Mau: Handbuch Dieselmotoren im Kraftwerks- und Schiffsbetrieb, Springer-Vieweg, Braunschweig/Wiesbaden 1984, ISBN 978-3-528-14889-8. p. 10
  9. Günter Mau: Handbuch Dieselmotoren im Kraftwerks- und Schiffsbetrieb, Springer-Vieweg, Braunschweig/Wiesbaden 1984, ISBN 978-3-528-14889-8. p. 17
  10. Sloan 1964, pp. 341–353.
  11. MTU Inc, Detroit Diesel 2-cycle engines.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.