Spontaneous alternation

Spontaneous Alternation Behavior (SAB) describes the tendency to alternate in their pursuit of different stimuli in consecutive trials despite a lack of training or reinforcement [1]. The Behavior emerged from experiments using animals, mainly rodents, who naturally demonstrated the behavioral pattern when placed in previously unexplored maze shapes (eg. using a T/Y-maze) [1][2].

Spontaneous Alternation testing is a behavioral assessment method derived from SAB. It is used to investigate exploratory behavior[3] and cognitive function (related to spatial learning and memory)[3][4]. These assessments are most often done with animals. The test serves great purpose in comparative psychology[5], wherein non-human animals are studied to investigate differences within and between species with the aims of applying their findings to a greater understanding of human behavior[6]. It is particularly useful in studying the potential neuroanatomical and neurobiological mediators of cognitive function[7] seeing as, where there are ethical limitations posed in the physiological study of humans, there is greater opportunity for more invasive procedures to be ethically conducted into non-human animals.

References

  1. Dember, W. N., & Richman, C. L. (2012). Spontaneous Atlernation Behaviour. Springer.
  2. Dennis, W. (1935). A Comparison of the Rat's First and Second Explorations of a Maze Unit. The American Journal of Psychology, 47(3), 488. doi:10.2307/1416343
  3. T Maze Spontaneous Alternation. (n.d.). [TLD]. Stanford Medicine. Retrieved 22 March 2020
  4. Wolf, A., Bauer, B., Abner, E. L., Ashkenazy-Frolinger, T., & Hartz, A. M. S. (2016). A Comprehensive Behavioral Test Battery to Assess Learning and Memory in 129S6/Tg2576 Mice. PLoS One, 11(1). doi:10.1371/journal.pone.0147733
  5. The Editors of Encyclopaedia Britannica. (2020). Comparative psychology. In Encyclopædia Britannica. Encyclopædia Britannica, inc.
  6. Domjan, M. (1987). Comparative Psychology and the Study of Animal Learning. Journal of Comparative Psychology, 101(3), 237–241. doi:10.1037/0735-7036.101.3.237
  7. Richman, C. L., Dember, W. N., & Kim, P. (1986). Spontaneous Alternation Behavior in Animals: A Review. Current Psychological Research & Reviews, 5, 358–391. doi:10.1007/BF02686603
  8. Ryan, R. M. (2012). The Oxford Handbook of Human Motivation. Oxford University Press.
  9. Glanzer, M. (1953). Stimulus satiation: An explanation of spontaneous alternation and related phenomena. Psychological Review, 60(4), 257–268. doi:10.1037/h0062718
  10. Wayne, D. (1939). Spontaneous alternation in rats as an indicator of the persistence of stimulus effects. Journal of Comparative Psychology, 28(2), 305–312. doi:10.1037/h0056494
  11. Dember, W. N., & Earl, R. W. (1957). Analysis of exploratory, manipulatory, and curiosity behaviors. Psychological Review, 64(2), 91–96. doi:10.1037/h0046861
  12. Lewis, S. A., Negelspach, D. C., Kaladchibachi, S., Cowen, S. L., & Fernandez, F. (2017). Spontaneous alternation: A potential gateway to spatial working memory in Drosophila. Neurobiology of Learning and Memory, 142, 230–235. doi:10.1016/j.nlm.2017.05.013
  13. van Asselen, M., Kessels, R. P., Neggers, S. F., Kappelle, L. J., Frijns, C. J., & Postma, A. (2005). Brain areas involved in spatial working memory. Neuropsychologia, 44(7), 1185–1194. doi:10.1016/j.neuropsychologia.2005.10.005
  14. Li, B., Arime, Y., Hall, F. S., & Uhl, G. R. (2009). Impaired spatial working memory and decreased frontal cortex BDNF protein level in dopamine transporter knockout mice. European Journal of Pharmocology, 628(1–3), 104–107. doi:10.1016/j.ejphar.2009.11.036
  15. Lamberty, Y., & Gower, A. J. (1990). Age-related changes in spontaneous behavior and learning in NMRI mice from maturity to middle age. Physiology & Behavior, 47(6), 1137–1144. doi:10.1016/0031-9384(90)90364-A
  16. Douglas, Robert J. (1989), Dember, William N.; Richman, Charles L. (eds.), "Spontaneous Alternation Behavior and the Brain", Spontaneous Alternation Behavior, Springer, pp. 73–108, doi:10.1007/978-1-4613-8879-1_5, ISBN 978-1-4613-8879-1, retrieved 2020-03-17
  17. Miller, M. M.; Hyder, S. M.; Assayag, R.; Panarella, S. R.; Tousignant, P.; Franklin, K. B. J. (1999-07-01). "Estrogen modulates spontaneous alternation and the cholinergic phenotype in the basal forebrain". Neuroscience. 91 (3): 1143–1153. doi:10.1016/S0306-4522(98)00690-3. ISSN 0306-4522.
  18. Adelöf, J., Ross, M., Lazic, S., Zetterberg, M., Wiseman, J., & Hernebring, M. (2019). Conclusions from a behavioral aging study on male and female F2 hybrid mice on age-related behavior, buoyancy in water-based tests, and an ethical method to assess lifespan.Aging, 11(17), 7150–7168. doi:10.18632/aging.102242
  19. Y Maze Spontaneous Alternation Test. (n.d.). [TLD]. Stanford Medicine. Retrieved 22 March 2020
  20. Ohno, M., Sametsky, E. A., Younkin, L. H., Oakley, H., Younkin, S. G., Citron, M., Vassar, R., & Disterhoft, J. F. (2004). BACE1 deficiency rescues memory deficits and cholinergic dysfunction in a mouse model of Alzheimer's disease. Neuron, 41(1), 27–33. doi:10.1016/S0896-6273(03)00810-9
  21. Vecera, Sham P.; Rothbart, Mary K.; Posner, Michael I. (1991-10-01). "Development of Spontaneous Alternation in Infancy". Journal of Cognitive Neuroscience. 3 (4): 351–354. doi:10.1162/jocn.1991.3.4.351. ISSN 0898-929X.
  22. Dukewich, Kristie R.; Klein, Raymond M. (2015-07). "Inhibition of return: A phenomenon in search of a definition and a theoretical framework". Attention, Perception, & Psychophysics. 77 (5): 1647–1658. doi:10.3758/s13414-015-0835-3. ISSN 1943-3921.
  23. Bats, S; Thoumas, J. L; Lordi, B; Tonon, M. C; Lalonde, R; Caston, J (2001-01-08). "The effects of a mild stressor on spontaneous alternation in mice". Behavioural Brain Research. 118 (1): 11–15. doi:10.1016/S0166-4328(00)00285-0. ISSN 0166-4328.
  24. Bracken, M. B. (2008). Why animal studies are often poor predictors of human reactions to exposure. Journal of the Royal Society of Medicine, 102(3), 120–122. doi:10.1258/jrsm.2008.08k033
  25. Rothacher, Y., Nguyen, A., Lenggenhager, B., Kunz, A., & Brugger, P. (2020). Walking through virtual mazes: Spontaneous alternation behaviour in human adults. Cortex, 127, 1–16. doi:10.1016/j.cortex.2020.01.018
  26. Syme, G. J., & Syme, L. A. (1977). Spontaneous Alternation in Mice: A Test of the Mere-Exposure Hypothesis. The American Journal of Psychology, 90(4), 621–633. doi:10.2307/1421736


This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.