Rigidity theory (physics)

Rigidity theory, or topological constraint theory, is a tool for predicting properties of complex networks (such as glasses) based on their composition. It was introduced by Phillips in 1979[1] and 1981[2], and refined by Thorpe in 1983.[3] Inspired by the study of the stability of mechanical trusses as pioneered by James Clerk Maxwell[4], and by the seminal work on glass structure done by William Houlder Zachariasen[5], this theory reduces complex molecular networks to nodes (atoms, molecules, proteins, etc.) constrained by rods (chemical constraints), thus filtering out microscopic details that ultimately don't affect macroscopic properties. An equivalent theory was developed by P.K. Gupta A.R. Cooper in 1990, where rather than nodes representing atoms, they represented unit polytopes[6]. An example of this would be the SiO tetrahedra in pure glassy silica. This style of analysis has applications in biology and chemistry, such as understanding adaptability in protein-protein interaction networks.[7] Rigidity theory applied to the molecular networks arising from phenotypical expression of certain diseases may provide insights regarding their structure and function.

In molecular networks, atoms can be constrained by radial 2-body bond-stretching constraints, which keep interatomic distances fixed, and angular 3-body bond-bending constraints, which keep angles fixed around their average values. As stated by Maxwell's criterion, a mechanical truss is isostatic when the number of constraints equals the number of degrees of freedom of the nodes. In this case, the truss is optimally constrained, being rigid but free of stress. This criterion has been applied by Phillips to molecular networks, which are called flexible, stressed-rigid or isostatic when the number of constraints per atoms is respectively lower, higher or equal to 3, the number of degrees of freedom per atom in a three-dimensional system.[8] Typically, the conditions for glass formation will be optimal if the network is isostatic, which is for example the case for pure silica.[9] Flexible systems show internal degrees of freedom, called floppy modes,[3] whereas stressed-rigid ones are complexity locked by the high number of constraints and tend to crystallize instead of forming glass during a quick quenching.

References

  1. Phillips, J. C. (1979). "Topology of covalent non-crystalline solids I: Short-range order in chalcogenide alloys". Journal of Non-Crystalline Solids. 34 (2): 153–181. Bibcode:1979JNCS...34..153P. doi:10.1016/0022-3093(79)90033-4.
  2. Phillips, J. C. (1981-01-01). "Topology of covalent non-crystalline solids II: Medium-range order in chalcogenide alloys and A-Si(Ge)". Journal of Non-Crystalline Solids. 43 (1): 37–77. doi:10.1016/0022-3093(81)90172-1. ISSN 0022-3093.
  3. Thorpe, M. F. (1983). "Continuous deformations in random networks". Journal of Non-Crystalline Solids. 57 (3): 355–370. Bibcode:1983JNCS...57..355T. doi:10.1016/0022-3093(83)90424-6.
  4. Maxwell, J. Clerk (April 1864). "XLV. On reciprocal figures and diagrams of forces". The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. 27 (182): 250–261. doi:10.1080/14786446408643663. ISSN 1941-5982.
  5. Zachariasen, W. H. (October 1932). "THE ATOMIC ARRANGEMENT IN GLASS". Journal of the American Chemical Society. 54 (10): 3841–3851. doi:10.1021/ja01349a006. ISSN 0002-7863.
  6. Gupta, P. K.; Cooper, A. R. (1990-08-02). "Topologically disordered networks of rigid polytopes". Journal of Non-Crystalline Solids. XVth International Congress on Glass. 123 (1): 14–21. doi:10.1016/0022-3093(90)90768-H. ISSN 0022-3093.
  7. Sharma, Ankush; Ferraro MV; Maiorano F; Blanco FDV; Guarracino MR (February 2014). "Rigidity and flexibility in protein-protein interaction networks: a case study on neuromuscular disorders". arXiv:1402.2304. Cite journal requires |journal= (help)
  8. Mauro, J. C. (May 2011). "Topological constraint theory of glass" (PDF). Am. Ceram. Soc. Bull.
  9. Bauchy, M.; Micoulaut; Celino; Le Roux; Boero; Massobrio (August 2011). "Angular rigidity in tetrahedral network glasses with changing composition". Physical Review B. 84 (5): 054201. Bibcode:2011PhRvB..84e4201B. doi:10.1103/PhysRevB.84.054201.
  10. Bauchy, Mathieu (2019-03-01). "Deciphering the atomic genome of glasses by topological constraint theory and molecular dynamics: A review". Computational Materials Science. 159: 95–102. doi:10.1016/j.commatsci.2018.12.004. ISSN 0927-0256.
  11. Smedskjaer, Morten M.; Mauro, John C.; Yue, Yuanzheng (2010-09-08). "Prediction of Glass Hardness Using Temperature-Dependent Constraint Theory". Physical Review Letters. 105 (11): 115503. Bibcode:2010PhRvL.105k5503S. doi:10.1103/PhysRevLett.105.115503. PMID 20867584.
  12. Wray, Peter. "Gorilla Glass 3 explained (and it is a modeling first for Corning!)". Ceramic Tech Today. The American Ceramic Society. Retrieved 24 January 2014.
  13. Smedskjaer, M. M.; Mauro; Sen; Yue (September 2010). "Quantitative Design of Glassy Materials Using Temperature-Dependent Constraint Theory". Chemistry of Materials. 22 (18): 5358–5365. doi:10.1021/cm1016799.
  14. Bauchy, M.; Micoulaut (February 2013). "Transport Anomalies and Adaptative Pressure-Dependent Topological Constraints in Tetrahedral Liquids: Evidence for a Reversibility Window Analogue". Phys. Rev. Lett. 110 (9): 095501. Bibcode:2013PhRvL.110i5501B. doi:10.1103/PhysRevLett.110.095501. PMID 23496720.
  15. Moukarzel, Cristian F. (March 1998). "Isostatic Phase Transition and Instability in Stiff Granular Materials". Physical Review Letters. 81 (8): 1634. arXiv:cond-mat/9803120. Bibcode:1998PhRvL..81.1634M. doi:10.1103/PhysRevLett.81.1634.
  16. Phillips, J. C. (2004). "Constraint theory and hierarchical protein dynamics". J. Phys.: Condens. Matter. 16 (44): S5065–S5072. Bibcode:2004JPCM...16S5065P. doi:10.1088/0953-8984/16/44/004.
  17. Boolchand, P.; Georgiev, Goodman (2001). "Discovery of the intermediate phase in chalcogenide glasses". Journal of Optoelectronics and Advanced Materials. 3 (3): 703–720.
  18. Bauchy, M.; Micoulaut; Boero; Massobrio (April 2013). "Compositional Thresholds and Anomalies in Connection with Stiffness Transitions in Network Glasses". Physical Review Letters. 110 (16): 165501. Bibcode:2013PhRvL.110p5501B. doi:10.1103/PhysRevLett.110.165501. PMID 23679615.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.