RNA modification

RNA modification occurs in all living organisms, and is one of the most evolutionarily conserved properties of Ribonucleic acid or RNAs.[1][2][3] It can affect the activity, localization as well as stability of RNAs, and has been linked with human diseases.[1][2][3][4]

More than 160 types of RNA modifications have been described so far,[5] recent studies have revealed they are abundant in tRNAs and in regulatory non-coding RNAs (e.g., lncRNAs, miRNAs, snRNAs, snoRNAs) as well as in mRNAs and rRNAs.[4]

Technologies

Next generation sequencing

To identify diverse post-transcriptional modifications of RNA molecules and determine the transcriptome-wide landscape of RNA modifications by means of next generation RNA sequencing, recently many studies have developed conventional[6] or specialised sequencing methods.[1][2][3] Examples of specialised methods are MeRIP-seq,[7] m6A-seq,[8] methylation-iCLIP,[9] m6A-CLIP,[10] Pseudo-seq,[11] Ψ-seq,[12] CeU-seq,[13] Aza-IP[14] and RiboMeth-seq[15]). Application of these methods have identified various modifications (e.g. pseudouridine, m6A, m5C, 2′-O-Me) within coding genes and non-coding genes (e.g. tRNA, lncRNAs, microRNAs) at single nucleotide or very high resolution.[4] A novel database, RMBase (http://mirlab.sysu.edu.cn/rmbase/),[4] has provide various web interfaces to show all RNA modification sites identified from above-mentioned sequencing technologies.

Mass Spectrometry

Mass spectrometry is a way to qualitatively and (relatively) quantify RNA modifications.[16] More often than not, modifications cause an increase in mass for a given nucleoside. This gives a characteristic readout for the nucleoside and the modified counterpart.[16] Moreover, mass spectrometry allows the investigation of modification dynamics by labeling RNA molecules with stable (non-radioactive) heavy isotopes in vivo. Due to the defined mass increase of heavy isotope labeled nucleosides they can be distinguished from their respective unlabeled isotopomeres by mass spectrometry. This method, called NAIL-MS (nucleic acid isotope labeling coupled mass spectrometry), enables a variety of approaches to investigate RNA modification dynamics.[17][18][19]

Function

Messenger RNA modification

Recently, functional experiments have revealed many novel functional roles of RNA modifications. For example, m6A has been predicted to affect protein translation and localization,[1][2][3] mRNA stability,[20] alternative polyA choice [10] and stem cell pluripotency.[21] Pseudouridylation of nonsense codons suppresses translation termination both in vitro and in vivo, suggesting that RNA modification may provide a new way to expand the genetic code.[22] Importantly, many modification enzymes are dysregulated and genetically mutated in many disease types.[1] For example, genetic mutations in pseudouridine synthases cause mitochondrial myopathy, sideroblastic anemia (MLASA) [23] and dyskeratosis congenital.[24]

Transfer RNA modifications

Transfer RNA or tRNA is the most abundantly modified type of RNA.[25] Modifications in tRNA play crucial roles in maintaining translation efficiency through supporting structure, anticodon-codon interactions, and interactions with enzymes.[26]

Anticodon modifications are important for proper decoding of mRNA. Since the genetic code is degenerate, anticodon modifications are necessary to properly decode mRNA. Particularly, the wobble position of the anticodon determines how the codons are read. For example, in eukaryotes an adenosine at position 34 of the anticodon can be converted to inosine. Inosine is a modification that is able to base-pair with cytosine, adenine, and uridine.[27]

Another commonly modified base in tRNA is the position adjacent to the anticodon. Position 37 is often hypermodified with bulky chemical modifications. These modifications prevent frameshifting and increase anticodon-codon binding stability through stacking interactions[28].

Ribosomal RNA modification

Ribosomal RNA modifications are made throughout the ribosome synthesis. Modifications primarily play a role in the structure of the rRNA in order to protect translational efficiency[29].

Types

Adenosine is one of the four canonical bases in RNA. Above are some examples of chemical modifications that have biological functions. Information was gathered from Modomics Database of RNA Modifications

There are over 160 RNA modifications identified[30]. Chemical modifications can range from simple methylations (m6A) to hypermodifications (i6A) that require several steps for synthesis[30]. Hypermodified bases are primarily seen at position 34 and 37 of the tRNA anticodon. Other examples of hypermodifications include (but not limited to) 2-methylthio-N6-(cis-hydroxyisopentenyl) adenosine (ms2io6A), 5-methoxycarbonylmethyl-2-thiouridine (mcm5s2U), and 7-aminocarboxypropyl-demethylwyosine (yW)[30].

The location of the modification on the nucleoside may also vary. It is possible for the sugar group (ribose) to be modified and/or the base of the nucleoside[30].

DataBases

Name DescriptiontypeLinkReferences
RMBase RMBase is designed for decoding the landscape of RNA modifications identified from high-throughput sequencing data (Pseudo-seq, Ψ-seq, CeU-seq, Aza-IP, MeRIP-seq, m6A-seq, m6A-CLIP, RiboMeth-seq). It demonstrated thousands of RNA modifications located within mRNAs, regulatory ncRNAs (e.g. lncRNAs, miRNAs), miRNA target sites and disease-related SNPs.databasewebsite[31][32]
MODOMICS MODOMICS is a database of RNA modifications that provides comprehensive information concerning the chemical structures of modified ribonucleosides, their biosynthetic pathways, RNA-modifying enzymes and location of modified residues in RNA sequences.databasewebsite[30][33]
RNAMDB RNAMDB has served as a focal point for information pertaining to naturally occurring RNA modificationsdatabasewebsite[34]
3D Ribosomal Modification Maps A reference database that has sequences of mapped ribosomal RNAs with visualization tools in 2D and 3D. database website [35]
.

References

  1. Li S, Mason CE (2013). "The pivotal regulatory landscape of RNA modifications". Annual Review of Genomics and Human Genetics. 15: 127–50. doi:10.1146/annurev-genom-090413-025405. PMID 24898039.
  2. Song CX, Yi C, He C (November 2012). "Mapping recently identified nucleotide variants in the genome and transcriptome". Nature Biotechnology. 30 (11): 1107–16. doi:10.1038/nbt.2398. PMC 3537840. PMID 23138310.
  3. Meyer KD, Jaffrey SR (May 2014). "The dynamic epitranscriptome: N6-methyladenosine and gene expression control". Nature Reviews. Molecular Cell Biology. 15 (5): 313–26. doi:10.1038/nrm3785. PMC 4393108. PMID 24713629.
  4. Sun WJ, Li JH, Liu S, Wu J, Zhou H, Qu LH, Yang JH (January 2016). "RMBase: a resource for decoding the landscape of RNA modifications from high-throughput sequencing data". Nucleic Acids Research. 44 (D1): D259-65. doi:10.1093/nar/gkv1036. PMC 4702777. PMID 26464443.
  5. Boccaletto P, Machnicka MA, Purta E, Piatkowski P, Baginski B, Wirecki TK, de Crécy-Lagard V, Ross R, Limbach PA, Kotter A, Helm M, Bujnicki JM (January 2018). "MODOMICS: a database of RNA modification pathways. 2017 update". Nucleic Acids Research. 46 (D1): D303–D307. doi:10.1093/nar/gkx1030. PMC 5753262. PMID 29106616.
  6. "Accurate Mapping of tRNA Reads"; Anne Hoffmann et al.; Bioinformatics, btx756, https://doi.org/10.1093/bioinformatics/btx756
  7. Meyer KD, Saletore Y, Zumbo P, Elemento O, Mason CE, Jaffrey SR (June 2012). "Comprehensive analysis of mRNA methylation reveals enrichment in 3' UTRs and near stop codons". Cell. 149 (7): 1635–46. doi:10.1016/j.cell.2012.05.003. PMC 3383396. PMID 22608085.
  8. Dominissini D, Moshitch-Moshkovitz S, Schwartz S, Salmon-Divon M, Ungar L, Osenberg S, Cesarkas K, Jacob-Hirsch J, Amariglio N, Kupiec M, Sorek R, Rechavi G (April 2012). "Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq". Nature. 485 (7397): 201–6. Bibcode:2012Natur.485..201D. doi:10.1038/nature11112. PMID 22575960. S2CID 3517716.
  9. Hussain S, Sajini AA, Blanco S, Dietmann S, Lombard P, Sugimoto Y, Paramor M, Gleeson JG, Odom DT, Ule J, Frye M (July 2013). "NSun2-mediated cytosine-5 methylation of vault noncoding RNA determines its processing into regulatory small RNAs". Cell Reports. 4 (2): 255–61. doi:10.1016/j.celrep.2013.06.029. PMC 3730056. PMID 23871666.
  10. Ke S, Alemu EA, Mertens C, Gantman EC, Fak JJ, Mele A, Haripal B, Zucker-Scharff I, Moore MJ, Park CY, Vågbø CB, Kusśnierczyk A, Klungland A, Darnell JE, Darnell RB (October 2015). "A majority of m6A residues are in the last exons, allowing the potential for 3' UTR regulation". Genes & Development. 29 (19): 2037–53. doi:10.1101/gad.269415.115. PMC 4604345. PMID 26404942.
  11. Carlile TM, Rojas-Duran MF, Zinshteyn B, Shin H, Bartoli KM, Gilbert WV (November 2014). "Pseudouridine profiling reveals regulated mRNA pseudouridylation in yeast and human cells". Nature. 515 (7525): 143–6. Bibcode:2014Natur.515..143C. doi:10.1038/nature13802. PMC 4224642. PMID 25192136.
  12. Schwartz S, Bernstein DA, Mumbach MR, Jovanovic M, Herbst RH, León-Ricardo BX, Engreitz JM, Guttman M, Satija R, Lander ES, Fink G, Regev A (September 2014). "Transcriptome-wide mapping reveals widespread dynamic-regulated pseudouridylation of ncRNA and mRNA". Cell. 159 (1): 148–162. doi:10.1016/j.cell.2014.08.028. PMC 4180118. PMID 25219674.
  13. Li X, Zhu P, Ma S, Song J, Bai J, Sun F, Yi C (August 2015). "Chemical pulldown reveals dynamic pseudouridylation of the mammalian transcriptome". Nature Chemical Biology. 11 (8): 592–7. doi:10.1038/nchembio.1836. PMID 26075521.
  14. Khoddami V, Cairns BR (May 2013). "Identification of direct targets and modified bases of RNA cytosine methyltransferases". Nature Biotechnology. 31 (5): 458–64. doi:10.1038/nbt.2566. PMC 3791587. PMID 23604283.
  15. Birkedal U, Christensen-Dalsgaard M, Krogh N, Sabarinathan R, Gorodkin J, Nielsen H (January 2015). "Profiling of ribose methylations in RNA by high-throughput sequencing". Angewandte Chemie. 54 (2): 451–5. doi:10.1002/anie.201408362. PMID 25417815.
  16. Wetzel C, Limbach PA (January 2016). "Mass spectrometry of modified RNAs: recent developments". The Analyst. 141 (1): 16–23. Bibcode:2016Ana...141...16W. doi:10.1039/C5AN01797A. PMC 4679475. PMID 26501195.
  17. Heiss, Matthias; Reichle, Valentin F.; Kellner, Stefanie (09 02, 2017). "Observing the fate of tRNA and its modifications by nucleic acid isotope labeling mass spectrometry: NAIL-MS". RNA Biology. 14 (9): 1260–1268. doi:10.1080/15476286.2017.1325063. ISSN 1555-8584. PMC 5699550. PMID 28488916. Check date values in: |date= (help)
  18. Reichle, Valentin F.; Weber, Verena; Kellner, Stefanie (12 18, 2018). "NAIL-MS in E. coli Determines the Source and Fate of Methylation in tRNA". ChemBioChem: A European Journal of Chemical Biology. 19 (24): 2575–2583. doi:10.1002/cbic.201800525. ISSN 1439-7633. PMC 6582434. PMID 30328661. Check date values in: |date= (help)
  19. Reichle, Valentin F.; Kaiser, Steffen; Heiss, Matthias; Hagelskamp, Felix; Borland, Kayla; Kellner, Stefanie (03 01, 2019). "Surpassing limits of static RNA modification analysis with dynamic NAIL-MS". Methods (San Diego, Calif.). 156: 91–101. doi:10.1016/j.ymeth.2018.10.025. ISSN 1095-9130. PMID 30395967. Check date values in: |date= (help)
  20. Wang X, Lu Z, Gomez A, Hon GC, Yue Y, Han D, Fu Y, Parisien M, Dai Q, Jia G, Ren B, Pan T, He C (January 2014). "N6-methyladenosine-dependent regulation of messenger RNA stability". Nature. 505 (7481): 117–20. Bibcode:2014Natur.505..117W. doi:10.1038/nature12730. PMC 3877715. PMID 24284625.
  21. Geula S, Moshitch-Moshkovitz S, Dominissini D, Mansour AA, Kol N, Salmon-Divon M, Hershkovitz V, Peer E, Mor N, Manor YS, Ben-Haim MS, Eyal E, Yunger S, Pinto Y, Jaitin DA, Viukov S, Rais Y, Krupalnik V, Chomsky E, Zerbib M, Maza I, Rechavi Y, Massarwa R, Hanna S, Amit I, Levanon EY, Amariglio N, Stern-Ginossar N, Novershtern N, Rechavi G, Hanna JH (February 2015). "Stem cells. m6A mRNA methylation facilitates resolution of naïve pluripotency toward differentiation". Science. 347 (6225): 1002–6. doi:10.1126/science.1261417. PMID 25569111. S2CID 206562941.
  22. Karijolich J, Yu YT (June 2011). "Converting nonsense codons into sense codons by targeted pseudouridylation". Nature. 474 (7351): 395–8. doi:10.1038/nature10165. PMC 3381908. PMID 21677757.
  23. Bykhovskaya Y, Casas K, Mengesha E, Inbal A, Fischel-Ghodsian N (June 2004). "Missense mutation in pseudouridine synthase 1 (PUS1) causes mitochondrial myopathy and sideroblastic anemia (MLASA)". American Journal of Human Genetics. 74 (6): 1303–8. doi:10.1086/421530. PMC 1182096. PMID 15108122.
  24. Heiss NS, Knight SW, Vulliamy TJ, Klauck SM, Wiemann S, Mason PJ, Poustka A, Dokal I (May 1998). "X-linked dyskeratosis congenita is caused by mutations in a highly conserved gene with putative nucleolar functions". Nature Genetics. 19 (1): 32–8. doi:10.1038/ng0598-32. PMID 9590285. S2CID 205342127.
  25. Kirchner S, Ignatova Z (February 2015). "Emerging roles of tRNA in adaptive translation, signalling dynamics and disease". Nature Reviews. Genetics. 16 (2): 98–112. doi:10.1038/nrg3861. PMID 25534324. S2CID 6727707.
  26. Lorenz C, Lünse CE, Mörl M (April 2017). "tRNA Modifications: Impact on Structure and Thermal Adaptation". Biomolecules. 7 (2): 35. doi:10.3390/biom7020035. PMC 5485724. PMID 28375166.
  27. Agris PF, Vendeix FA, Graham WD (February 2007). "tRNA's wobble decoding of the genome: 40 years of modification". Journal of Molecular Biology. 366 (1): 1–13. doi:10.1016/j.jmb.2006.11.046. PMID 17187822.
  28. Agris PF, Vendeix FA, Graham WD (February 2007). "tRNA's wobble decoding of the genome: 40 years of modification". Journal of Molecular Biology. 366 (1): 1–13. doi:10.1016/j.jmb.2006.11.046. PMID 17187822.
  29. Sloan, Katherine; et al. (2016). "Tuning the ribosome: The influence of rRNA modification on eukaryotic ribosome biogenesis and function". RNA Biology. 14 (9): 1138–1152. doi:10.1080/15476286.2016.1259781. PMC 5699541. PMID 27911188.
  30. Machnicka MA, Milanowska K, Osman Oglou O, Purta E, Kurkowska M, Olchowik A, Januszewski W, Kalinowski S, Dunin-Horkawicz S, Rother KM, Helm M, Bujnicki JM, Grosjean H (January 2013). "MODOMICS: a database of RNA modification pathways--2013 update". Nucleic Acids Research. 41 (Database issue): D262-7. doi:10.1093/nar/gks1007. PMC 3531130. PMID 23118484.
  31. Xuan JJ, Sun WJ, Lin PH, Zhou KR, Liu S, Zheng LL, Qu LH, Yang JH (January 2018). "RMBase v2.0: deciphering the map of RNA modifications from epitranscriptome sequencing data". Nucleic Acids Research. 46 (D1): D327–D334. doi:10.1093/nar/gkx934. PMC 5753293. PMID 29040692.
  32. Sun WJ, Li JH, Liu S, Wu J, Zhou H, Qu LH, Yang JH (January 2016). "RMBase: a resource for decoding the landscape of RNA modifications from high-throughput sequencing data". Nucleic Acids Research. 44 (D1): D259-65. doi:10.1093/nar/gkv1036. PMC 4702777. PMID 26464443.
  33. Limbach PA, Crain PF, McCloskey JA (June 1994). "Summary: the modified nucleosides of RNA". Nucleic Acids Research. 22 (12): 2183–96. doi:10.1093/nar/22.12.2183. PMC 523672. PMID 7518580.
  34. Cantara WA, Crain PF, Rozenski J, McCloskey JA, Harris KA, Zhang X, Vendeix FA, Fabris D, Agris PF (January 2011). "The RNA Modification Database, RNAMDB: 2011 update". Nucleic Acids Research. 39 (Database issue): D195-201. doi:10.1093/nar/gkq1028. PMC 3013656. PMID 21071406.
  35. Piekna-Przybylska D, Decatur WA, Fournier MJ (January 2008). "The 3D rRNA modification maps database: with interactive tools for ribosome analysis". Nucleic Acids Research. 36 (Database issue): D178-83. doi:10.1093/nar/gkm855. PMC 2238946. PMID 17947322.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.