RASAL2

Ras GTPase-activating protein nGAP is an enzyme that in humans is encoded by the RASAL2 gene.[5][6]

RASAL2
Identifiers
AliasesRASAL2, NGAP, RAS protein activator like 2
External IDsOMIM: 606136 MGI: 2443881 HomoloGene: 35217 GeneCards: RASAL2
Gene location (Human)
Chr.Chromosome 1 (human)[1]
Band1q25.2Start178,094,141 bp[1]
End178,484,147 bp[1]
RNA expression pattern
More reference expression data
Orthologs
SpeciesHumanMouse
Entrez

9462

226525

Ensembl

ENSG00000075391

ENSMUSG00000070565

UniProt

Q9UJF2

n/a

RefSeq (mRNA)

NM_004841
NM_170692

NM_177644

RefSeq (protein)

NP_004832
NP_733793

n/a

Location (UCSC)Chr 1: 178.09 – 178.48 MbChr 1: 157.14 – 157.41 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

This gene encodes a protein that contains the GAP-related domain (GRD), a characteristic domain of GTPase-activating proteins (GAPs). GAPs function as activators of Ras superfamily of small GTPases. The protein encoded by this gene is able to complement the defective RasGAP function in a yeast system. Two alternatively spliced transcript variants of this gene encoding distinct isoforms have been reported.[6]

References

  1. GRCh38: Ensembl release 89: ENSG00000075391 - Ensembl, May 2017
  2. GRCm38: Ensembl release 89: ENSMUSG00000070565 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Noto S, Maeda T, Hattori S, Inazawa J, Imamura M, Asaka M, Hatakeyama M (Jan 1999). "A novel human RasGAP-like gene that maps within the prostate cancer susceptibility locus at chromosome 1q25". FEBS Lett. 441 (1): 127–31. doi:10.1016/S0014-5793(98)01530-0. PMID 9877179.
  6. "Entrez Gene: RASAL2 RAS protein activator like 2".

Further reading

  • Maekawa M, Nakamura S, Hattori S (1993). "Purification of a novel ras GTPase-activating protein from rat brain". J. Biol. Chem. 268 (30): 22948–52. PMID 8226805.
  • Bonaldo MF, Lennon G, Soares MB (1997). "Normalization and subtraction: two approaches to facilitate gene discovery". Genome Res. 6 (9): 791–806. doi:10.1101/gr.6.9.791. PMID 8889548.
  • Seki N, Ohira M, Nagase T, et al. (1998). "Characterization of cDNA clones in size-fractionated cDNA libraries from human brain". DNA Res. 4 (5): 345–9. doi:10.1093/dnares/4.5.345. PMID 9455484.
  • Strausberg RL, Feingold EA, Grouse LH, et al. (2003). "Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences". Proc. Natl. Acad. Sci. U.S.A. 99 (26): 16899–903. doi:10.1073/pnas.242603899. PMC 139241. PMID 12477932.
  • Ota T, Suzuki Y, Nishikawa T, et al. (2004). "Complete sequencing and characterization of 21,243 full-length human cDNAs". Nat. Genet. 36 (1): 40–5. doi:10.1038/ng1285. PMID 14702039.
  • Bouwmeester T, Bauch A, Ruffner H, et al. (2004). "A physical and functional map of the human TNF-alpha/NF-kappa B signal transduction pathway". Nat. Cell Biol. 6 (2): 97–105. doi:10.1038/ncb1086. PMID 14743216.
  • Jin J, Smith FD, Stark C, et al. (2004). "Proteomic, functional, and domain-based analysis of in vivo 14-3-3 binding proteins involved in cytoskeletal regulation and cellular organization". Curr. Biol. 14 (16): 1436–50. doi:10.1016/j.cub.2004.07.051. PMID 15324660.
  • Gregory SG, Barlow KF, McLay KE, et al. (2006). "The DNA sequence and biological annotation of human chromosome 1". Nature. 441 (7091): 315–21. doi:10.1038/nature04727. PMID 16710414.
  • Olsen JV, Blagoev B, Gnad F, et al. (2006). "Global, in vivo, and site-specific phosphorylation dynamics in signaling networks". Cell. 127 (3): 635–48. doi:10.1016/j.cell.2006.09.026. PMID 17081983.


This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.