Plumbagin

Plumbagin or 5-hydroxy-2-methyl-1,4-naphthoquinone is an organic compound with the chemical formula C
11
H
8
O
3
. It is regarded as a toxin[1] and it is genotoxic[2] and mutagenic.[3]

Plumbagin
Names
IUPAC name
5-hydroxy-2-methyl-naphthalene-1,4-dione
Identifiers
3D model (JSmol)
ChEBI
ChEMBL
ChemSpider
ECHA InfoCard 100.006.882
KEGG
UNII
Properties
C11H8O3
Molar mass 188.17942 g/mol
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
N verify (what is YN ?)
Infobox references

Plumbagin is a yellow dye,[1] formally derived from naphthoquinone.

It is named after the plant genus Plumbago, from which it was originally isolated.[4] It is also commonly found in the carnivorous plant genera Drosera and Nepenthes.[5][6] It is also a component of the black walnut drupe.

Pharmacologic properties

The following properties were described in various cellular and animal models:

  • antimicrobial,[7][8][9]
  • antimalarial,[10]
  • anti-inflammatory,[11]
  • anticarcinogenic,[12][13][14]
  • cardiotonic,[15]
  • immunosuppressive,[16]
  • antifertility action,[17]
  • neuroprotective,[18]
  • anti-atherosclerosis effects.[19]
  • Plumbagin has been shown to induce cell cycle arrest and apoptosis in numerous cancer cell lines including melanoma, lung, breast and others. It triggers autophagy via inhibition of the Akt/mTOR pathway and induces G2/M cell cycle arrest and apoptosis in A549 cells through JNK-dependent p53 Ser15 phosphorylation. Promotes autophagic cell death in MDA-MB-231 and MCF-7 cells and inhibits Akt/mTOR signaling. Induces intracellular ROS generation in a PI 5-kinase-dependent manner.
  • Plumbagin is also reported to have targeted anticancer activity against BRCA1 defective cancers. The cells that are having wild type BRCA1 may repair the damages caused by ROS induction due to plumbagin, where as cells defective in BRAC1 may not, as BRCA1 is involved in DNA damage repair activity.
  • Positive inotropic activity[20]
  • Enzymatic spectrum of herbal plants Plumbago Linn.[21]
  • Bioactive spectra of plumbagin.[22]
  • Effect on root- knot nematode Meloidogyne spp.[23]

See also

References

  1. Black Walnut. Drugs.com.
  2. Jemal Demma; Karl Hallberg; Björn Hellman (2009). "Genotoxicity of plumbagin and its effects on catechol and NQNO-induced DNA damage in mouse lymphoma cells". Toxicology in Vitro. 23 (2): 266–271. doi:10.1016/j.tiv.2008.12.007. PMID 19124069.
  3. S B Farr; D O Natvig & T Kogoma (1985). "Toxicity and mutagenicity of plumbagin and the induction of a possible new DNA repair pathway in Escherichia coli". J Bacteriol. 164 (3): 1309–1316. doi:10.1128/JB.164.3.1309-1316.1985. PMC 219331. PMID 2933393.
  4. van der Vijver; L. M. (1972). "Distribution of Plumbagin in the Plumbaginaceae". Phytochemistry. 11 (11): 3247–3248. doi:10.1016/S0031-9422(00)86380-3.
  5. Wang, W.; Luo, X.; Li, H. (2010). "Terahertz and Infrared Spectra of Plumbagin, Juglone, and Menadione". Carnivorous Plant Newsletter. 39 (3): 82–88.
  6. Rischer, H.; Hamm, A.; Bringmann, G. (2002). "Nepenthes insignis Uses a C2-Portion of the Carbon Skeleton of L-Alanine Acquired via its Carnivorous Organs, to Build up the Allelochemical Plumbagin". Phytochemistry. 59 (6): 603–609. doi:10.1016/S0031-9422(02)00003-1. PMID 11867092.
  7. Didry, N.; Dubrevil, L.; Pinkas, M. (1994). "Activity of anthraquinonic and naphthoquinonic compounds on oral bacteria". Die Pharmazie. 49 (9): 681–683. PMID 7972313.
  8. de Paiva, S. R.; Figueiredo, M. R.; Aragão, T. V.; Kaplan, M. A. C. (2003). "Antimicrobial Activity in Vitro of Plumbagin Isolated from Plumbago Species" (PDF). Memórias do Instituto Oswaldo Cruz. 98 (7): 959–961. doi:10.1590/S0074-02762003000700017. PMID 14762525.
  9. Dama L.B., Poul B.N.and Jadhav B.V. (1998). Antimicrobial activity of Napthoquinonic compounds. J. Ecotoxicol. Environ. Monit. 8:213-215
  10. Likhitwitayawuid, K.; Kaewamatawong, R.; Ruangrungsi, N.; Krungkrai, J. (1998). "Antimalarial Naphthoquinones from Nepenthes thorelii". Planta Medica. 64 (3): 237–241. doi:10.1055/s-2006-957417. PMID 9581522.
  11. Checker R.; Sharma D.; Sandur, S. K.; Subrahmanyam, G.; Krishnan, S.; Poduval, T. B.; Sainis, K. B. (2010). "Plumbagin inhibits proliferative and inflammatory responses of T cells independent of ROS generation but by modulating intracellular thiols". Journal of Cellular Biochemistry. 110 (5): 1082–1093. doi:10.1002/jcb.22620. PMC 3065107. PMID 20564204.
  12. Parimala, R.; Sachdanandam, P. (1993). "Effect of plumbagin on some glucose metabolizing enzymes studied in rats in experimental hepatoma". Molecular and Cellular Biochemistry. 125 (1): 59–63. doi:10.1007/BF00926835. PMID 8264573.
  13. Hsu, Y.-L.; Cho,, C.-Y.; Kuo, P.-L.; Huang, Y.-T.; Lin, C.-C. (2006). "Plumbagin (5-Hydroxy-2-methyl-1,4-naphthoquinone) Induces Apoptosis and Cell Cycle Arrest in A549 Cells through p53 Accumulation via c-Jun NH2-Terminal Kinase-Mediated Phosphorylation at Serine 15 in vitro and in vivo". Journal of Pharmacology and Experimental Therapeutics. 318 (2): 484–494. doi:10.1124/jpet.105.098863. PMID 16632641.CS1 maint: multiple names: authors list (link)
  14. Subramaniya, B. R.; Srinivasan, G.; Sadullah, S. S.; Davis, N.; Subhadara, L. B.; Halagowder, D.; Sivasitambaram, N. D. (2011). Navarro, Alfons (ed.). "Apoptosis Inducing Effect of Plumbagin on Colonic Cancer Cells Depends on Expression of COX-2". PLOS ONE. 6 (4): e18695. Bibcode:2011PLoSO...618695S. doi:10.1371/journal.pone.0018695. PMC 3084694. PMID 21559086.
  15. Itoigawa, M.; Takeya, K.; Furukawa, H. (1991). "Cardiotonic action of plumbagin on guinea-pig papillary muscle". Planta Medica. 57 (4): 317–319. doi:10.1055/s-2006-960106. PMID 1775570.
  16. McKallip, R. J.; Lombard, C.; Sun, J.; Ramakrishnan, R. (2010). "Plumbagin-induced apoptosis in lymphocytes is mediated through increased reactive oxygen species production, upregulation of Fas, and activation of the caspase cascade". Toxicology and Applied Pharmacology. 247 (1): 41–52. doi:10.1016/j.taap.2010.05.013. PMID 20576514.
  17. Bhargava, S. K. (1984). "Effects of plumbagin on reproductive function of male dog". Indian Journal of Experimental Biology. 22 (3): 153–156. PMID 6083981.
  18. Son, T. G.; Camandola, S.; Arumugam, T. V.; Cutler, R. G.; Telljohann, R. S.; Mughal, M. R.; Moore, T. A.; Luo, W.; Yu, Q. S.; Johnson, D. A.; Johnson, J. A.; Greig, N. H.; Mattson, M. P. (2010). "Plumbagin, a novel Nrf2/ARE Activator, Protects against Cerebral Ischemia". Journal of Neurochemistry. 112 (5): 1316–1326. doi:10.1111/j.1471-4159.2009.06552.x. PMC 2819586. PMID 20028456.
  19. Ding, Y.; Chen, Z.-J.; Liu, S.; Che, D.; Vetter, M.; Chang, C.-H. (2005). "Inhibition of Nox-4 activity by plumbagin, a plant-derived bioactive naphthoquinone". Journal of Pharmacy and Pharmacology. 57 (1): 111–116. doi:10.1211/0022357055119. PMID 15638999.
  20. Poul B.N, Dama L.B.,and Jadhav B.V. (1999). Positive inotropic activity of Plumbagin. D. E. I. J. Sci. Engineering Res. 11: 26-29
  21. Poul B. N., Dama L.B. and Jadhav B. V. (1999). Enzymatic spectrum of herbal Plants Plumbago Linn. Asian J. Chem. 11(1):273-275
  22. Poul B. N., DamaL.B. and Jadhav B. V. (1999). Bioactive spectra of Plumbagin. Asian J. Chem. 11 (1):144-148
  23. Dama L.B. (2002). Effect of naturally occurring napthoquinones on root- knot nematode Meloidogyne spp. Indian Phytopathology. 55 (1): 67-69
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.