Magnetic separation

Magnetic separation is the process of separating components of mixtures by using magnets to attract magnetic materials.[1] The process that is used for magnetic separation detaches non-magnetic material with those who are magnetic. This technique is useful for not all, but few minerals such as ferromagnetic (materials strongly affected by magnetic fields) and paramagnetic (materials that are less affected but the effect is A large diversity of mechanical means are used to separate magnetic materials.[2] During magnetic separation, magnets are situated inside two separator drums which bear liquids. Due to the magnets, magnetic particles are being drifted by the movement of the drums. This can create a magnetic concentrate (e.g. an ore concentrate).[2]

History

Michael Faraday discovered that when a substance is put in a magnetic environment, the intensity of the environment is modified by it.[3] With this information, he discovered that different materials can be separated with their magnetic properties. The table below shows the common ferromagnetic and paramagnetic minerals as well as the field intensity that is required in order to separate those minerals.[3]

Common Ferromagnetic and Paramagnetic Minerals
Mineral Formula Field Strength (kG)
Ferromagnetic Magnetic 1
Pyrrhotite 0.5 - 4
Paramagnetic Ilmenite 8 - 16
Siderite 9 - 18
Chromite 10 - 16
Hermatite 12 - 18
Wolframite 12 - 18
Tourmaline 16 - 20

In the 1860s, magnetic separation started to become commercialized. It was used to separate iron from brass.[3] After the 1880s, ferromagnetic materials started to be magnetically separated. In the 1900s, high intensity magnetic separation was inaugurated which allowed the separation of pragmatic materials.[3] After the Second World War, systems that were the most common were electromagnets. The technique was used in scrap yards. Magnetic separation was developed again in the late 1970s with new technologies being inaugurated.[2] The new forms of magnetic separation included magnetic pulleys, overhead magnets and magnetic drums.

In mines where wolframite was mixed with cassiterite, such as South Crofty and East Pool mine in Cornwall or with bismuth such as at the Shepherd and Murphy mine in Moina, Tasmania, magnetic separation is used to separate the ores. At these mines, a device called a Wetherill's Magnetic Separator (invented by John Price Wetherill, 1844–1906)[4] was used. In this machine, the raw ore, after calcination was fed onto a conveyor belt which passed underneath two pairs of electromagnets under which further belts ran at right angles to the feed belt. The first pair of balls was weakly magnetized and served to draw off any iron ore present. The second pair were strongly magnetized and attracted the wolframite, which is weakly magnetic.[4] These machines were capable of treating 10 tons of ore a day.

Common applications

Magnetic separation can also be used in electromagnetic cranes that separate magnetic material from scraps and unwanted substances.[1] This explains its use for shipment equipments and waste management. Unwanted metals can be removed from goods with this technique. It keeps all materials pure.[1] Recycling centres use magnetic separation often to separate components from recycling, isolate metals, and purify ores.[1] Overhead magnets, magnetic pulleys, and the magnetic drums were the methods used in the recycling industry.[1]

Magnetic separation is also useful in mining iron as it is attracted to a magnet.[3]

Another application, not widely known but very important, is to use magnets in process industries to remove metal contaminants from product streams[1]. This takes a lot of importance in food or pharmaceutical industries.

Magnetic separation is also used in situations where pollution needs to be controlled, in chemical processing, as well as during the benefaction of nonferrous low-grade ores.[1]

Magnetic separation is also used in the following industries: dairy, grain and milling, plastics, food, chemical, oils, textile, and more.

Magnetic cell separation

Magnetic cell separation is on the rise. It is currently being used in clinical therapies, more specifically in cancers and [[hereditary di

In microbiology

[[File:GE MagRack 6 eppendorf with magnetic beads mounted.jpg|thumb|DNA purification using a GE MagRack 6 and magnetic beads with a coating that attaches to the substance ofjournal|last=Olsvik|first=O|last2=Popovic|first2=T|last3=Skjerve|first3=E|last4=Cudjoe|first4=K S|last5=Hornes|first5=E|last6=Ugelstad|first6=J|last7=Uhlén|first7=M|date=1994|title=Magnetic separation techniques in diagnostic microbiology.|journal=Clinical Microbiology Reviews|volume=7|issue=1|pages=43–54|doi=10.1128/cmr.7.1.43| Magnetic filters are fitted on the boiler’s pipework to collect magnetite from the circulating water before it has a chance to build up and lower the efficiency of the heating system. The water circulating around the heating system picks up bits of sludge (or magnetite) which can build up. The magnetic filter attracts all these bits of debris with a strong magnet as the water flows around it, preventing a build-up of sludge in the pipework or in the boiler. [5]

Low-field magnetic separation

Low-field magnetic separation is often in environmental contexts such as water purification and the separation of complex mixtures.[6] Low magnetic field gradients are field gradients that are smaller than one hundred tesla per meter.[6] Monodisperse magnetite () and nanocrystals () are used for this technique.[6]

Weak magnetic separation

Weak magnetic separation is used to create cleaner iron-rich products that can be reused.[7] These products have low levels of impurities and a high iron load. This technique is used as a recycling technology.[7] It is coupled with steelmaking slag fines as well as a selection of particle size screening.[7]

Equipments

With today's technology advances, a variety of equipments is available to perform magnetic separation.[8] Grates, plate magnets, magnet housing, basic cartridges, pulleys, drums, and self-cleaning separators are designed to separate metals with either gravity, pneumatic, or magnetic conveying systems.[8]

References

  1. https://www.powderprocess.net/Equipments%20html/Magnets.html
  2. Oberteuffer, J. (1974). "Magnetic separation: A review of principles, devices, and applications". IEEE Transactions on Magnetics. 10 (2): 223–238. Bibcode:1974ITM....10..223O. doi:10.1109/TMAG.1974.1058315.
  3. Bronkala, William J. (2000-06-15), "Magnetic Separation", Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH Verlag GmbH & Co. KGaA, doi:10.1002/14356007.b02_19, ISBN 3527306730
  4. "Historical Markers - Samuel Wetherill". ExplorePAhistory.com. Retrieved 2012-08-20.
  5. What is a magnaclean filter? (page visited on 14 March 2020)
  6. Yavuz, C. T.; Mayo, J. T.; Yu, W. W.; Prakash, A.; Falkner, J. C.; Yean, S.; Cong, L.; Shipley, H. J.; Kan, A. (2006-11-10). "Low-Field Magnetic Separation of Monodisperse Fe3O4 Nanocrystals". Science. 314 (5801): 964–967. doi:10.1126/science.1131475. ISSN 0036-8075. PMID 17095696.
  7. Ma, Naiyang; Houser, Joseph Blake (2014). "Recycling of steelmaking slag fines by weak magnetic separation coupled with selective particle size screening". Journal of Cleaner Production. 82: 221–231. doi:10.1016/j.jclepro.2014.06.092. ISSN 0959-6526.
  8. Magnetics, Bunting. "Magnetic Separation Equipment | Bunting Magnetics". Bunting Magnetics Co. Retrieved 2019-04-04.


This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.