Funding of science

Research funding is a term generally covering any funding for scientific research, in the areas of natural science, technology, and social science. The term often connotes funding obtained through a competitive process, in which potential research projects are evaluated and only the most promising receive funding.

Most research funding comes from two major sources, corporations (through research and development departments) and government (primarily carried out through universities and specialized government agencies; often known as research councils). A smaller amount of scientific research is funded by charitable foundations, especially in relation to developing cures for diseases such as cancer, malaria, and AIDS.

According to OECD, more than 60% of research and development in scientific and technical fields is carried out by industry, and 20% and 10% respectively by universities and government.[1]

Comparatively, in countries with less GDP such as Portugal and Mexico, the industry contribution is significantly lower. The government funding proportion in certain industries is higher, and it dominates research in social science and humanities. In commercial research and development, all but the most research-oriented corporations focus more heavily on near-term commercialization possibilities rather than "blue-sky" ideas or technologies (such as nuclear fusion).[2]

History

Wealth was created on farms growing food. The fecundity of the earth was seen to deteriorate over years of harvests so attention was given to restoring yields. Institutionalization of this study led to demonstration farms and then agricultural experiment stations. Germany and Connecticut saw early investment of government money into science to improve their economies, and ultimately research into agricultural chemistry.

In the eighteenth and nineteenth centuries, as the pace of technological progress increased before and during the industrial revolution, most scientific and technological research was carried out by individual inventors using their own funds. A system of patents was developed to allow inventors a period of time (often twenty years) to commercialise their inventions and recoup a profit, although in practice many found this difficult. The talents of an inventor are not those of a businessman, and there are many examples of inventors (e.g. Charles Goodyear) making rather little money from their work whilst others were able to market it.

In the twentieth century, scientific and technological research became increasingly systematised, as corporations developed, and discovered that continuous investment in research and development could be a key element of success in a competitive strategy. It remained the case, however, that imitation by competitors - circumventing or simply flouting patents, especially those registered abroad - was often just as successful a strategy for companies focused on innovation in matters of organisation and production technique, or even in marketing. A classic example is that of Wilkinson Sword and Gillette in the disposable razor market, where the former has typically had the technological edge, and the latter the commercial one.

By country

Different countries spend vastly different amounts on research, in both absolute and relative terms. For instance, South Korea and Israel spend more than 4% of their GDP on research while many Arabic countries spend less than 1% (e.g. Saudi Arabia 0.25%).[3]

United States

The US spent $456.1 billion for research and development (R&D) in 2013, the most recent year for which such figures are available, according to the National Science Foundation. The private sector accounted for $322.5 billion, or 71%, of total national expenditures, with universities and colleges spending $64.7 billion, or 14%, in second place.[4]

Switzerland

Switzerland spent CHF 22 billion for R&D in 2015 with an increase of 10.5% compared with 2012 when the last survey was conducted.[5] In relative terms, this represents 3.4% of the country's GDP. R&D activities are carried out by nearly 125,000 individuals, mostly in the private sector (71%) and higher education institutions (27%).

Process

Often scientists apply for research funding which a granting agency may (or may not) approve to financially support. These grants require a lengthy process as the granting agency can inquire about the researcher(s)'s background, the facilities used, the equipment needed, the time involved, and the overall potential of the scientific outcome. The process of grant writing and grant proposing is a somewhat delicate process for both the grantor and the grantee: the grantors want to choose the research that best fits their scientific principles, and the individual grantees want to apply for research in which they have the best chances but also in which they can build a body of work towards future scientific endeavors.

The Engineering and Physical Sciences Research Council in the United Kingdom has devised an alternative method of fund-distribution: the sandpit.[6]

Most universities have research administration offices to facilitate the interaction between the researcher and the granting agency.[7] "Research administration is all about service—service to our faculty, to our academic units, to the institution, and to our sponsors. To be of service, we first have to know what our customers want and then determine whether or not we are meeting those needs and expectations."[8]

In the United States of America, the National Council of University Research Administrators (NCURA) serves its members and advances the field of research administration through education and professional development programs, the sharing of knowledge and experience, and by fostering a professional, collegial, and respected community.

Public funding

Government-funded research can either be carried out by the government itself, or through grants to researchers outside the government. The bodies providing public funding are often referred to as research councils.

Scientific innovations often foreshadow or inspire further ideas unintentionally. For example, NASA's quest to put a man on the moon inspired them to develop better sound recording and reading technologies. NASA's research was furthered by the music industry, who used it to develop audio cassettes. Audio cassettes, being smaller and able to store more music, quickly dominated the music industry and increased the availability of music.

An additional distinction of government-sponsored research is that the government does not make a claim to the intellectual property, whereas private research-funding bodies sometimes claim ownership of the intellectual property that they are paying to have developed. Consequently, government-sponsored research more often allows the individual discoverer to file intellectual property claims over their own work.

List of research councils

Research councils are (usually public) bodies that provide research funding in the form of research grants or scholarships. These include arts councils and research councils for the funding of science.

An incomplete list of national and international pan-disciplinary public research councils:

NameLocation
National Scientific and Technical Research Council  Argentina
Australian Research Council, National Health and Medical Research Council, Commonwealth Scientific and Industrial Research Organisation, Australian Nuclear Science and Technology Organisation, Australian Space Agency, Defence Science and Technology Group  Australia
Austrian Research Promotion Agency, Austrian Science Fund, Austrian Space Agency  Austria
Sciensano, Research Foundation - Flanders  Belgium
National Council for Scientific and Technological Development, Brazilian Space Agency  Brazil
National Research Council, Natural Sciences and Engineering Research Council, Canadian Institutes of Health Research, Social Sciences and Humanities Research Council, Canadian Space Agency, Defence Research and Development Canada, Atomic Energy of Canada Limited, Public Health Agency of Canada  Canada
National Commission for Scientific Research and Technology  Chile
National Natural Science Foundation of China, Ministry of Science and Technology, Chinese Academy of Sciences, China National Space Administration  China
Danish Agency for Science, Technology and Innovation[9]  Denmark
European Research Council, European Defence Fund  European Union
Finnish Funding Agency for Technology and Innovation  Finland
National Agency for Research, National Centre for Space Studies, French Alternative Energies and Atomic Energy Commission, French National Centre for Scientific Research, French National Institute of Health and Medical Research  France
German Research Foundation, German Aerospace Center  Germany
National Hellenic Research Foundation  Greece
Icelandic Centre for Research[10]  Iceland
Council of Scientific and Industrial Research, Indian Council of Medical Research, Indian Space Research Organisation, Indian Council of Agricultural Research, Defence Research and Development Organization  India
Irish Research Council, Science Foundation Ireland  Ireland
Israel Science Foundation[11], Israel Innovation Authority, Israel Space Agency  Israel
National Research Council, Italian Space Agency  Italy
National Research and Technology Council, Mexican Space Agency  Mexico
Netherlands Organisation for Scientific Research, Netherlands Space Office  Netherlands
Research Council of Norway, Norwegian Defence Research Establishment, Norwegian Institute of Public Health, Norwegian Space Agency  Norway
Pakistan Science Foundation, Pakistan Council of Scientific and Industrial Research, Pakistan Health Research Council, Space and Upper Atmosphere Research Commission, Pakistan Agricultural Research Council, Defence Science and Technology Organization  Pakistan
Portuguese Foundation for Science and Technology  Portugal
Science Fund of the Republic of Serbia  Serbia
Agency for Science, Technology and Research, Defence Science and Technology Agency  Singapore
National Research Foundation of South Africa  South Africa
Spanish National Research Council, National Institute for Aerospace Technology  Spain
National Research Council of Sri Lanka  Sri Lanka
Swedish Research Council, Swedish National Space Agency, Swedish Defence Research Agency  Sweden
Swiss National Science Foundation, Swiss Space Office   Switzerland
National Science and Technology Development Agency  Thailand
Scientific and Technological Research Council of Turkey, Turkish Space Agency  Turkey
Uganda National Council for Science and Technology[12]  Uganda
National Research Foundation  United Arab Emirates
Engineering and Physical Sciences Research Council, Medical Research Council, Biotechnology and Biological Sciences Research Council, Science and Technology Facilities Council, Defence Science and Technology Laboratory, Natural Environment Research Council, Economic and Social Research Council, Arts and Humanities Research Council, United Kingdom Atomic Energy Authority, UK Space Agency  United Kingdom
National Science Foundation, National Institutes of Health, National Aeronautics and Space Administration, Defence Advanced Research Projects Agency, Advanced Research Projects Agency-Energy, DOE Office of Science, Agricultural Research Service  United States

Private funding

Private funding for research comes from philanthropists,[13] crowd-funding,[14] private companies, non-profit foundations, and professional organizations.[15] Philanthropists and foundations have been known to pour millions of dollars into a wide variety of scientific investigations, including basic research discovery, disease cures, particle physics, astronomy, marine science, and the environment.[13] Many large technology companies spend billions of dollars on research and development each year to gain an innovative advantage over their competitors, though only about 42% of this funding goes towards projects that are considered substantially new, or capable of yielding radical breakthroughs.[16] New scientific start-up companies initially seek funding from crowd-funding organizations, venture capitalists, and angel investors, gathering preliminary results using rented facilities,[17] but aim to eventually become self-sufficient.[14][18]

A company may share resources with a materials science society to gain proprietary knowledge or trained workers.

Hard money versus soft money

In academic contexts, hard money may refer to funding received from a government or other entity at regular intervals, thus providing a steady inflow of financial resources to the beneficiary. The antonym, soft money, refers to funding provided only through competitive research grants and the writing of grant proposals.[19]

Hard money is usually issued by the government for the advancement of certain projects or for the benefit of specific agencies. Community healthcare, for instance, may be supported by the government by providing hard money. Since funds are disbursed regularly and continuously, the offices in charge of such projects are able to achieve their objectives more effectively than if they had been issued one-time grants.

Individual jobs at a research institute may be classified as "hard-money positions" or "soft-money positions";[19] the former are expected to provide job security because their funding is secure in the long term, whereas individual "soft-money" positions may come and go with fluctuations in the number of grants awarded to the institution.

Influence on research

The source of funding may introduce conscious or unconscious biases into a researcher's work.[20] Disclosure of potential conflicts of interest (COIs) is used by biomedical journals to guarantee credibility and transparency of the scientific process. Conflict of interest disclosure, however, is not systematically nor consistently dealt with by journals which publish scientific research results. When research is funded by the same agency that can be expected to gain from a favorable outcome there is a potential for biased results and research shows that results are indeed more favorable than would be expected from a more objective view of the evidence. A 2003 systematic review studied the scope and impact of industry sponsorship in biomedical research. The researchers found financial relationships among industry, scientific investigators, and academic institutions widespread. Results showed a statistically significant association between industry sponsorship and pro-industry conclusions and concluded that "Conflicts of interest arising from these ties can influence biomedical research in important ways".[21] A British study found that a majority of the members on national and food policy committees receive funding from food companies.[22]

In an effort to cut costs, the pharmaceutical industry has turned to the use of private, nonacademic research groups (i.e., contract research organizations [CROs]) which can do the work for less money than academic investigators. In 2001 CROs came under criticism when the editors of 12 major scientific journals issued a joint editorial, published in each journal, on the control over clinical trials exerted by sponsors, particularly targeting the use of contracts which allow sponsors to review the studies prior to publication and withhold publication of any studies in which their product did poorly. They further criticized the trial methodology stating that researchers are frequently restricted from contributing to the trial design, accessing the raw data, and interpreting the results.[23]

The Cochrane Collaboration, a worldwide group that aims to provide compiled scientific evidence to aid well informed health care decisions, conducts systematic reviews of randomized controlled trials of health care interventions and tries to disseminate the results and conclusions derived from them.[24][25] A few more recent reviews have also studied the results of non-randomized, observational studies. The systematic reviews are published in the Cochrane Library. A 2011 study done to disclose possible conflicts of interests [COI] in underlying research studies used for medical meta-analyses reviewed 29 meta-analyses and found that COIs in the studies underlying the meta-analyses were rarely disclosed. The 29 meta-analyses reviewed an aggregate of 509 randomized controlled trials (RCTs). Of these, 318 RCTs reported funding sources with 219 (69%) industry funded. 132 of the 509 RCTs reported author COI disclosures, with 91 studies (69%) disclosing industry financial ties with one or more authors. The information was, however, seldom reflected in the meta-analyses. Only two (7%) reported RCT funding sources and none reported RCT author-industry ties. The authors concluded "without acknowledgement of COI due to industry funding or author industry financial ties from RCTs included in meta-analyses, readers' understanding and appraisal of the evidence from the meta-analysis may be compromised."[26]

In 2003 researchers looked at the association between authors' published positions on the safety and efficacy in assisting with weight loss of olestra, a fat substitute manufactured by the Procter & Gamble (P&G), and their financial relationships with the food and beverage industry. They found that supportive authors were significantly more likely than critical or neutral authors to have financial relationships with P&G and all authors disclosing an affiliation with P&G were supportive. The authors of the study concluded: "Because authors' published opinions were associated with their financial relationships, obtaining noncommercial funding may be more essential to maintaining objectivity than disclosing personal financial interests."[27]

A 2005 study in the journal Nature[28] surveyed 3247 US researchers who were all publicly funded (by the National Institutes of Health). Out of the scientists questioned, 15.5% admitted to altering design, methodology or results of their studies due to pressure of an external funding source.

A theoretical model has been established whose simulations imply that peer review and over-competitive research funding foster mainstream opinion to monopoly.[29]

Efficiency of funding

Most funding agencies mandate efficient use of their funds; they want to maximize outcome for their money spent. Outcome can be measured by publication output, citation impact, number of patents, number of PhDs awarded etc. Another question is how to allocate funds to different disciplines, institutions, or researchers. A recent study by Wayne Walsh found that “prestigious institutions had on average 65% higher grant application success rates and 50% larger award sizes, whereas less-prestigious institutions produced 65% more publications and had a 35% higher citation impact per dollar of funding.”[30][31]

See also

References

  1. OECD Science, Technology and Industry Scoreboard 2015: Innovation for growth and society. OECD Science, Technology and Industry Scoreboard. OECD. 2015. p. 156. doi:10.1787/sti_scoreboard-2015-en. ISBN 9789264239784 via oecd-ilibrary.org.
  2. Taylor, R.A. (2012). "Socioeconomic impacts of heat transfer research". International Communications in Heat and Mass Transfer. 39 (10): 1467–1473. doi:10.1016/j.icheatmasstransfer.2012.09.007.
  3. "Gross domestic spending on R&D (indicator)". 2017-06-06. doi:10.1787/d8b068b4-en. Retrieved 1 July 2017. Cite journal requires |journal= (help)
  4. Boroush, Mark (September 2015). "U.S. R&D Increased in 2013, Well Ahead of the Pace of Gross Domestic Product" (PDF). National Science Foundation InfoBrief. Retrieved July 22, 2019.
  5. "Recherche et développement en Suisse 2015 (press release)". 2017-05-29. Retrieved 1 July 2017.
  6. Corbyn, Zoë (2009-07-02). "'Sandpits' bring out worst in 'infantilised' researchers". Times Higher Education. TSL Education. Sandpits, which were devised by the Engineering and Physical Sciences Research Council, typically involve about 30 selected researchers from different areas who are brought together for several days of intensive discussions about a particular topic. [...] The wheels of such events are oiled with the promise of up to £1 million in funding, which is dished out at the end through a group peer-review process.
  7. Gonzales, Evelina Garza, "External Funding and Tenure at Texas State University-San Marcos" (2009). Texas State University. Applied Research Projects. Paper 315. http://ecommons.txstate.edu/arp/315
  8. Robert A. Killoren, Jr., Associate Vice President for Research, Office of Sponsored Programs, Penn State U, Fall 2005. From Lowry, Peggy (2006) "Assessing the Sponsored Research Office". SPONSORED RESEARCH ADMINISTRATION: A Guide to Effective Strategies and Recommended Practices Archived 2009-04-22 at the Wayback Machine
  9. "Danish Agency for Science, Technology and Innovation".
  10. "RANNIS (Icelandic Centre for Research)".
  11. "Israel Science Foundation". Archived from the original on 2015-12-16.
  12. "The Uganda National Council for Science and Technology - UNCST".
  13. William J. Broad (2014-03-15). "Billionaires With Big Ideas Are Privatizing American Science". The New York Times. New York Times. Retrieved 30 November 2014.
  14. Giles, Jim (2012). "Finding philanthropy: Like it? Pay for it". Nature. 481 (7381): 252–253. Bibcode:2012Natur.481..252G. doi:10.1038/481252a. PMID 22258587.
  15. "Possible Funding Sources".
  16. Jaruzelski, B.; V. Staack; B. Goehle (2014). Global Innovation 1000: Proven Paths to Innovation Success (Technical report). Strategy&.
  17. Stephanie M. Lee (27 August 2014). "New Palo Alto lab for life science startups". SFGate.
  18. Dharmesh Shah. "7 Lessons On Startup Funding From a Research Scientist".
  19. "What is a soft-money research position?", Academia StackExchange
  20. "Who pays for science?".
  21. Lenard I Lesser; Cara B Ebbeling; Merrill Goozner; David Wypij; David S Ludwig (January 9, 2007). "Relationship between Funding Source and Conclusion among Nutrition-Related Scientific Articles". PLOS Medicine. PLOS. 4 (1): e5. doi:10.1371/journal.pmed.0040005. PMC 1764435. PMID 17214504.
  22. Marion Nestle (October 2001). "Food company sponsorship of nutrition research and professional activities: a conflict of interest?". Public Health Nutrition. Cambridge University Press. 4 (5): 1015–1022. doi:10.1079/PHN2001253. PMID 11784415.
  23. Davidoff, F; Deangelis, C. D.; Drazen, J. M.; Nicholls, M. G.; Hoey, J; Højgaard, L; Horton, R; Kotzin, S; Nylenna, M; Overbeke, A. J.; Sox, H. C.; Van Der Weyden, M. B.; Wilkes, M. S. (September 2001). "Sponsorship, authorship and accountability". CMAJ. 165 (6): 786–8. PMC 81460. PMID 11584570.
  24. Scholten, R. J.; Clarke, M; Hetherington, J (August 2005). "The Cochrane Collaboration". Eur J Clin Nutr. Suppl 1. 59 (S1): S147–S149. doi:10.1038/sj.ejcn.1602188. PMID 16052183.
  25. "Cochrane".
  26. "How Well Do Meta-Analyses Disclose Conflicts of Interests in Underlying Research Studies". The Cochrane Collaboration website. Cochrane Collaboration. 2011-06-06. Retrieved 24 March 2014.
  27. Levine, J; Gussow, JD; Hastings, D; Eccher, A (2003). "Authors' Financial Relationships With the Food and Beverage Industry and Their Published Positions on the Fat Substitute Olestra". American Journal of Public Health. 93 (4): 664–9. doi:10.2105/ajph.93.4.664. PMC 1447808. PMID 12660215.
  28. Martinson, BC; Anderson, MS; De Vries, R (2005). "Scientists behaving badly". Nature. 435 (7043): 737–8. Bibcode:2005Natur.435..737M. doi:10.1038/435737a. PMID 15944677.
  29. Fang, H. (2011). "Peer review and over-competitive research funding fostering mainstream opinion to monopoly". Scientometrics. 87 (2): 293–301. doi:10.1007/s11192-010-0323-4.
  30. "Research Dollars Go Farther at Less-Prestigious Institutions: Study". The Scientist Magazine®. Retrieved 2018-07-23.
  31. Wahls, Wayne P. (2018-07-13). "High cost of bias: Diminishing marginal returns on NIH grant funding to institutions". bioRxiv: 367847. doi:10.1101/367847.

Further reading

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.