F. J. Duarte

Francisco Javier "Frank" Duarte (born c. 1954) is a laser physicist and author/editor of several well-known books on tunable lasers[1][2][3][4][5][6][7][8][9][10] and quantum optics.[11] He introduced the generalized multiple-prism dispersion theory,[12][13][14] has discovered various multiple-prism grating oscillator laser configurations,[15][16][17] and pioneered polymer-nanoparticle gain media.[18] His contributions have found applications in a variety of fields including astronomical instrumentation,[19] atomic vapor laser isotope separation,[20][21][22] geodesics,[23] gravitational lensing,[24] laser medicine,[25][26][27] laser microscopy,[28][29] laser pulse compression,[30][31][32] laser spectroscopy,[33][34] nonlinear optics,[35] and tunable diode lasers.[36][37]

F. J. Duarte
F. J. Duarte at a meeting of the Optical Society in 2006
Bornc. 1954
Santiago, Chile
NationalityChilean American
Alma materMacquarie University
Known forTunable lasers
Narrow-linewidth dye lasers
Multiple-prism dispersion theory
N-slit interferometer
N-slit interferometric equation
AwardsPaul F. Forman Engineering Excellence Award (1995)
David Richardson Medal (2016)
Scientific career
FieldsPhysics
Optics
InstitutionsMacquarie University
University of New South Wales
University of Alabama
Eastman Kodak Company
State University of New York
University of New Mexico
Interferometric Optics
Doctoral advisorJ. A. Piper
Other academic advisorsJ. C. Ward
R. E. Aitchison

Duarte's research focuses mainly on physical optics and laser development. His work has taken place at a number of institutions in the academic, industrial, and defense sectors.

Research

Laser oscillators

Duarte and Piper introduced multiple-prism near-grazing-incidence grating cavities which originally were disclosed as copper-laser-pumped narrow-linewidth tunable laser oscillators.[15][16] Subsequently, he developed narrow-linewidth multiple-prism grating configurations for high-power CO2 laser oscillators[38] and solid-state tunable organic laser oscillators.[39]

Intracavity dispersion theory

Duarte also conceived the multiple-prism dispersion theories for tunable narrow-linewidth laser oscillators,[12] and multiple-prism laser pulse compression,[14][40] which are summarized in several of his books.[1][5][8] The introduction to this theory is the generalized multiple-prism dispersion equation[12]

which has found a variety of applications.[29][30]

Tunable lasers for isotope separation

His tunable narrow-linewidth laser oscillator configurations[16][41] have been adopted by various research groups working on uranium atomic vapor laser isotope separation (AVLIS).[20][21][22] This work was supported by the Australian Atomic Energy Commission.[41] During the course of this research, Duarte writes that he did approach the then federal minister for energy, Sir John Carrick, to advocate for the introduction of an AVLIS facility in Australia.[42] In 2002, he participated in research that led to the isotope separation of lithium using narrow-linewidth tunable diode lasers.[43]

Solid state organic dye lasers

From the mid-1980s to early 1990s Duarte and scientists from the US Army Missile Command developed ruggedized narrow-linewidth laser oscillators tunable directly in the visible spectrum.[44][45] This constituted the first disclosure, in the open literature, of a tunable narrow-linewidth laser tested on a rugged terrain. This research led to experimentation with polymer gain media and in 1994 Duarte reported on the first narrow-linewidth tunable solid state dye laser oscillators.[39] These dispersive oscillator architectures were then refined to yield single-longitudinal-mode emission limited only by Heisenberg's uncertainty principle.[17]

Organic gain media

Joint research, with R. O. James, on solid-state organic-inorganic materials, led to the discovery of polymer-nanoparticle gain media and to the emission of tunable low-divergence homogeneous laser beams from this class of media.[18] In 2005, Duarte and colleagues were the first to demonstrate directional coherent emission from an electrically excited organic semiconductor.[46][47] These experiments utilized a tandem OLED within an integrated interferometric configuration.[46][47]

Duarte's work in this area began with the demonstration of narrow-linewidth laser emission using coumarin-tetramethyl dyes[48][49] which offer high conversion efficiency and wide tunability in the green region of the electromagnetic spectrum.[50]

Interferometry and quantum optics

Duarte and colleagues demonstrated the superposition of diffraction patterns over N-slit interferograms. This interferogram corresponds to the interferometric character b (N = 3 slits) and exhibits a diffraction pattern superimposed on the right outer wing (see text).

In the late 1980s, he invented the digital N-slit laser interferometer for applications in imaging and microscopy.[51] Concurrently, he applied Dirac’s notation to describe quantum mechanically its interferometric and propagation characteristics.[52][53][54] This research also led to the generalized N-slit interferometric equation that was then applied to describe classical optics phenomena such as interference, diffraction, refraction, and reflection, in a generalized and unified quantum approach[6][55] that includes positive and negative refraction.[56] He also derived the cavity linewidth equation, for dispersive laser oscillators, using quantum mechanical principles.[57]

Further developments include very large N-slit laser interferometers to generate and propagate interferometric characters for secure free-space optical communications.[58][59] Interferometric characters is a term coined in 2002 to link interefometric signals to alphanumerical characters (see figure's legend).[58] These experiments provided the first observation of diffraction patterns superimposed over propagating interference signals, thus demonstrating non-destructive (or soft) interception of propagating interferograms.[59]

A spin-off of this research, with applications to the aviation industry, resulted from the discovery that N-slit laser interferometers are very sensitive detectors of clear air turbulence.[59][60]

Duarte provides a description of quantum optics, almost entirely via Dirac's notation, in his book Quantum Optics for Engineers.[11] In this book he derives the probability amplitude for quantum entanglement,

which he calls the Pryce-Ward probability amplitude, from an N-slit interferometric perspective. He also emphasizes a pragmatic non-interpretational approach to quantum mechanics.[11]

Career

Macquarie University

At Macquarie University, Duarte studied quantum physics under John Clive Ward and semiconductor physics under Ronald Ernest Aitchison. His PhD research was on laser physics and his supervisor was James A. Piper.

In the area of university politics, he established and led the Macquarie science reform movement,[61][62] that transformed the degree structure of the university. Macquarie's science reform, was widely supported by local scientists including physicists R. E. Aitchison, R. E. B. Makinson, A. W. Pryor, and J. C. Ward. In 1980, Duarte was elected as one of the Macquarie representatives to the Australian Union of Students from where he was expelled, and then reinstated, for "running over the tables."

Following completion of his PhD work, Duarte did post doctoral research, with B. J. Orr at the University of New South Wales, and then back at Macquarie University.

American phase

In 1983, Duarte traveled to the United States to assume a physics professorship at the University of Alabama. In 1985 he joined the Imaging Research Laboratories, at the Eastman Kodak Company, where he remained until 2006. While at Kodak he was chairman of Lasers '87 and subsequent conferences in this series.[63] Duarte has had a long association with the US Army Missile Command and the US Army Aviation and Missile Command, where he has participated (with R. W. Conrad and T. S. Taylor[45]) in directed energy research.

He was elected Fellow of the Australian Institute of Physics (1987) and Fellow of the Optical Society of America (1993) for his contributions to the development of narrow-linewidth tunable lasers. He is the first South American to have received such distinctions. In 1995, he received the Engineering Excellence Award for the invention of the N-slit laser interferometer,[64] and in 2016, he was awarded the David Richardson Medal for "seminal contributions to the physics and technology of multiple-prism arrays for narrow-linewidth tunable laser oscillators and laser pulse compression,"[65] from the Optical Society. Duarte's contributions are cited in some two hundred books.

Personal

Duarte was born in Santiago, Chile, and traveled to Sydney, Australia, as a teenager. There, he lived first in Strathfield and then in the northern small town of Cowan. In the United States he resided for a brief period in Tuscaloosa, Alabama, and then moved to Western New York.

See also

References

  1. F. J. Duarte and L. W. Hillman (Eds.) (1990). Dye Laser Principles. New York: Academic. ISBN 978-0122227004.CS1 maint: extra text: authors list (link)
  2. F. J. Duarte (Ed.) (1991). High Power Dye Lasers. Berlin: Springer. ISBN 978-0387540665.CS1 maint: extra text: authors list (link)
  3. F. J. Duarte (Ed.) (1992). Selected Papers on Dye Lasers. Bellingham: SPIE. ISBN 978-0819408846.CS1 maint: extra text: authors list (link)
  4. F. J. Duarte (Ed.) (1995). Tunable Laser Applications. New York: Marcel Dekker. ISBN 0-8247-8928-8.CS1 maint: extra text: authors list (link)
  5. F. J. Duarte (Ed.) (1995). Tunable Lasers Handbook. New York: Academic. ISBN 978-0122226953.CS1 maint: extra text: authors list (link)
  6. F. J. Duarte (2003). Tunable Laser Optics. New York: Elsevier Academic. ISBN 978-0122226960.
  7. F. J. Duarte (Ed.) (2009). Tunable Laser Applications, 2nd Ed. New York: CRC. ISBN 978-1420060096.CS1 maint: extra text: authors list (link)
  8. F. J. Duarte (2015). Tunable Laser Optics, 2nd Ed. New York: CRC. ISBN 978-1482245295.
  9. F. J. Duarte (Ed.) (2016). Tunable Laser Applications, 3rd Ed. New York: CRC. ISBN 978-1482261066.CS1 maint: extra text: authors list (link)
  10. F. J. Duarte (Ed.) (2018). Organic Lasers and Organic Photonics. Bristol: Institute of Physics. ISBN 978-0-7503-1570-8.CS1 maint: extra text: authors list (link)
  11. F. J. Duarte (2014). Quantum Optics for Engineers. New York: CRC. ISBN 978-1439888537.
  12. Duarte, F.J.; Piper, J.A. (1982). "Dispersion theory of multiple-prism beam expanders for pulsed dye lasers". Optics Communications. Elsevier BV. 43 (5): 303–307. doi:10.1016/0030-4018(82)90216-4. ISSN 0030-4018.
  13. Duarte, F. J.; Piper, J. A. (1983). "Generalized prism dispersion theory". American Journal of Physics. American Association of Physics Teachers (AAPT). 51 (12): 1132–1134. doi:10.1119/1.13323. ISSN 0002-9505.
  14. Duarte, F. J. (1987). "Generalized multiple-prism dispersion theory for pulse compression in ultrafast dye lasers". Optical and Quantum Electronics. Springer Science and Business Media LLC. 19 (4): 223–229. doi:10.1007/bf02032516. ISSN 0306-8919.
  15. Duarte, F. J.; Piper, J. A. (1981-06-15). "Prism preexpanded grazing-incidence grating cavity for pulsed dye lasers". Applied Optics. The Optical Society. 20 (12): 2113-2116. doi:10.1364/ao.20.002113. ISSN 0003-6935.
  16. Duarte, F. J.; Piper, James A. (1984-05-01). "Narrow linewidth, high prf copper laser-pumped dye-laser oscillators". Applied Optics. The Optical Society. 23 (9): 1391-1394. doi:10.1364/ao.23.001391. ISSN 0003-6935.
  17. Duarte, Francisco J. (1999-10-20). "Multiple-prism grating solid-state dye laser oscillator: optimized architecture". Applied Optics. The Optical Society. 38 (30): 6347-6349. doi:10.1364/ao.38.006347. ISSN 0003-6935.
  18. Duarte, F. J.; James, R. O. (2003-11-01). "Tunable solid-state lasers incorporating dye-doped, polymer– nanoparticle gain media". Optics Letters. The Optical Society. 28 (21): 2088-2090. doi:10.1364/ol.28.002088. ISSN 0146-9592.
  19. Sirat, Gabriel Y.; Wilner, Kalman; Neuhauser, Daniel (2005). "Uniaxial crystal interferometer: principles and forecasted applications to imaging astrometry". Optics Express. The Optical Society. 13 (16): 6310-6322. doi:10.1364/opex.13.006310. ISSN 1094-4087.
  20. Singh, Sunita; Dasgupta, K.; Kumar, S.; Manohar, K. G.; Nair, L. G.; Chatterjee, U. K. (1994-06-01). "High-power high-repetition-rate copper-vapor-pumped dye laser". Optical Engineering. SPIE-Intl Soc Optical Eng. 33 (6): 1894-1904. doi:10.1117/12.168243. ISSN 0091-3286.
  21. Sugiyama, Akira; Nakayama, T.; Kato, M.; Maruyama, Y.; Arisawa, T. (1996-04-01). "Characteristics of a pressure‐tuned single‐mode dye laser oscillator pumped by a copper vapor laser". Optical Engineering. SPIE-Intl Soc Optical Eng. 35 (4): 1093-1097. doi:10.1117/1.600726. ISSN 0091-3286.
  22. Singh, Nageshwar (2006-10-01). "Influence of optical inhomogeneity in the gain medium on the bandwidth of a high-repetition-rate dye laser pumped by copper vapor laser". Optical Engineering. SPIE-Intl Soc Optical Eng. 45 (10): 104204. doi:10.1117/1.2363168. ISSN 0091-3286.
  23. Yang, Fang; Cohen, Laurent D. (2015-12-11). "Geodesic Distance and Curves Through Isotropic and Anisotropic Heat Equations on Images and Surfaces". Journal of Mathematical Imaging and Vision. Springer Science and Business Media LLC. 55 (2): 210–228. doi:10.1007/s10851-015-0621-9. ISSN 0924-9907.
  24. Hippke, Michael (2018). "Interstellar communication. II. Application to the solar gravitational lens". Acta Astronautica. Elsevier BV. 142: 64–74. arXiv:1706.05570. doi:10.1016/j.actaastro.2017.10.022. ISSN 0094-5765.
  25. L. Goldman, Dye lasers in medicine, in Dye Laser Principles , F. J. Duarte and L. W. Hillman, Eds. (Academic, New York, 1990) Chapter 10.
  26. R. M. Clement, M. N. Kiernan, and K . Donne, Treatment of vascular lessions, US Patent 6398801 (2002).
  27. Sawinski, Jürgen; Denk, Winfried (2007). "Miniature random-access fiber scanner forin vivomultiphoton imaging". Journal of Applied Physics. AIP Publishing. 102 (3): 034701. doi:10.1063/1.2763945. ISSN 0021-8979.
  28. Nechay, B. A.; Siegner, U.; Achermann, M.; Bielefeldt, H.; Keller, U. (1999). "Femtosecond pump-probe near-field optical microscopy". Review of Scientific Instruments. AIP Publishing. 70 (6): 2758–2764. doi:10.1063/1.1149841. ISSN 0034-6748.
  29. Siegner, U; Achermann, M; Keller, U (2001-10-09). "Spatially resolved femtosecond spectroscopy beyond the diffraction limit". Measurement Science and Technology. IOP Publishing. 12 (11): 1847–1857. doi:10.1088/0957-0233/12/11/313. ISSN 0957-0233.
  30. Pang, L. Y.; Kintzer, E. S.; Fujimoto, J. G. (1992-11-15). "Ultrashort-pulse generation from high-power diode arrays by using intracavity optical nonlinearities". Optics Letters. The Optical Society. 17 (22): 1599-1601. doi:10.1364/ol.17.001599. ISSN 0146-9592.
  31. Osvay, K.; Kovács, A.P.; Kurdi, G.; Heiner, Z.; Divall, M.; Klebniczki, J.; Ferincz, I.E. (2005). "Measurement of non-compensated angular dispersion and the subsequent temporal lengthening of femtosecond pulses in a CPA laser". Optics Communications. Elsevier BV. 248 (1–3): 201–209. doi:10.1016/j.optcom.2004.11.099. ISSN 0030-4018.
  32. J. C. Diels and W. Rudolph, Ultrashort Laser Pulse Phenomena, 2nd Ed. (Academic, New York, 2006).
  33. W. Demtröder, Laserspektroscopie: Grundlagen und Techniken, 5th Ed. (Springer, Berlin, 2007).
  34. W. Demtröder, Laser Spectroscopy: Basic Principles, 4th Ed. (Springer, Berlin, 2008).
  35. Dolgaleva, Ksenia; Boyd, Robert W. (2012-03-13). "Local-field effects in nanostructured photonic materials". Advances in Optics and Photonics. The Optical Society. 4 (1): 1-77. doi:10.1364/aop.4.000001. ISSN 1943-8206.
  36. Zorabedian, P. (1992). "Characteristics of a grating-external-cavity semiconductor laser containing intracavity prism beam expanders". Journal of Lightwave Technology. Institute of Electrical and Electronics Engineers (IEEE). 10 (3): 330–335. doi:10.1109/50.124495. ISSN 0733-8724.
  37. R. W. Fox, L. Hollberg, and A. S. Zibrov, Semiconductor diode lasers, in Atomic, Molecular, and Optical Physics: Electromagnetic Radiation, F. B. Dunning and R. G. Hulet (Eds.) (Academic, New York, 1997) Chapter 4.
  38. Duarte, F. J. (1985-05-01). "Multiple-prism Littrow and grazing-incidence pulsed CO2 lasers". Applied Optics. The Optical Society. 24 (9): 1244-1245. doi:10.1364/ao.24.001244. ISSN 0003-6935.
  39. Duarte, F. J. (1994-06-20). "Solid-state multiple-prism grating dye-laser oscillators". Applied Optics. The Optical Society. 33 (18): 3857-3860. doi:10.1364/ao.33.003857. ISSN 0003-6935.
  40. Duarte, F. J. (2009-04-03). "Generalized multiple-prism dispersion theory for laser pulse compression: higher order phase derivatives". Applied Physics B. Springer Science and Business Media LLC. 96 (4): 809–814. doi:10.1007/s00340-009-3475-2. ISSN 0946-2171.
  41. Duarte, F. J.; Piper, J. A. (1982-08-01). "Comparison of prism-expander and grazing-incidence grating cavities for copper laser pumped dye lasers". Applied Optics. The Optical Society. 21 (15): 2782-2786. doi:10.1364/ao.21.002782. ISSN 0003-6935.
  42. Duarte, F. J. (2010). "Tunable lasers for atomic vapor laser isotope separation: the Australian contribution" (PDF). Australian Physics. 47 (2): 38-40.
  43. Olivares, Ignacio E.; Duarte, Andrés E.; Saravia, Eduardo A.; Duarte, Francisco J. (2002-05-20). "Lithium isotope separation with tunable diode lasers". Applied Optics. The Optical Society. 41 (15): 2973-2977. doi:10.1364/ao.41.002973. ISSN 0003-6935.
  44. Duarte, F. J.; Ehrlich, J. J.; Davenport, W. E.; Taylor, T. S. (1990-07-20). "Flashlamp pumped narrow-linewidth dispersive dye laser oscillators: very low amplified spontaneous emission levels and reduction of linewidth instabilities". Applied Optics. The Optical Society. 29 (21): 3176-3179. doi:10.1364/ao.29.003176. ISSN 0003-6935.
  45. Duarte, F.J.; Davenport, W.E.; Ehrlich, J.J.; Taylor, T.S. (1991). "Ruggedized narrow-linewidth dispersive dye laser oscillator". Optics Communications. Elsevier BV. 84 (5–6): 310–316. doi:10.1016/0030-4018(91)90093-s. ISSN 0030-4018.
  46. Duarte, F. J.; Liao, L. S.; Vaeth, K. M. (2005-11-15). "Coherence characteristics of electrically excited tandem organic light-emitting diodes". Optics Letters. The Optical Society. 30 (22): 3072-3074. doi:10.1364/ol.30.003072. ISSN 0146-9592.
  47. Duarte, F. J. (2007-01-26). "Coherent electrically excited organic semiconductors: visibility of interferograms and emission linewidth". Optics Letters. The Optical Society. 32 (4): 412-414. doi:10.1364/ol.32.000412. ISSN 0146-9592.
  48. Chen, C. H.; Fox, J. L.; Duarte, F. J.; Ehrlich, J. J. (1988-02-01). "Lasing characteristics of new coumarin-analog dyes: broadband and narrow-linewidth performance". Applied Optics. The Optical Society. 27 (3): 443-445. doi:10.1364/ao.27.000443. ISSN 0003-6935.
  49. Duarte, F. J. (1989). "Ray transfer matrix analysis of multiple-prism dye laser oscillators". Optical and Quantum Electronics. Springer Science and Business Media LLC. 21 (1): 47–54. doi:10.1007/bf02199466. ISSN 0306-8919.
  50. Duarte, F J; Liao, L S; Vaeth, K M; Miller, A M (2006-01-13). "Widely tunable green laser emission using the coumarin 545 tetramethyl dye as the gain medium". Journal of Optics A: Pure and Applied Optics. IOP Publishing. 8 (2): 172–174. doi:10.1088/1464-4258/8/2/010. ISSN 1464-4258.
  51. F. J. Duarte, Electro-optical interferometric microdensitometer system, US Patent 5255069 (1993).
  52. F. J. Duarte and D. J. Paine, Quantum mechanical description of N-slit interference phenomena, in Proceedings of the International Conference on Lasers '88, R. C. Sze and F. J. Duarte (Eds.) (STS, McLean, Va, 1989) pp. 42-47.
  53. F. J. Duarte, in High Power Dye Lasers (Springer-Verlag, Berlin,1991) Chapter 2.
  54. Duarte, F.J. (1993). "On a generalized interference equation and interferometric measurements". Optics Communications. Elsevier BV. 103 (1–2): 8–14. doi:10.1016/0030-4018(93)90634-h. ISSN 0030-4018.
  55. Duarte, F. J. (1997). "Interference, diffraction, and refraction, via Dirac's notation". American Journal of Physics. American Association of Physics Teachers (AAPT). 65 (7): 637–640. doi:10.1119/1.18613. ISSN 0002-9505.
  56. Duarte, F.J. (2005-11-17). "Multiple-prism dispersion equations for positive and negative refraction". Applied Physics B. Springer Science and Business Media LLC. 82 (1): 35–38. doi:10.1007/s00340-005-1996-x. ISSN 0946-2171.
  57. Duarte, F. J. (1992-11-20). "Cavity dispersion equation Δλ ≈ Δθ(∂θ/∂λ)−1: a note on its origin". Applied Optics. The Optical Society. 31 (33): 6979-6982. doi:10.1364/ao.31.006979. ISSN 0003-6935.
  58. Duarte, F.J. (2002). "Secure interferometric communications in free space". Optics Communications. Elsevier BV. 205 (4–6): 313–319. doi:10.1016/s0030-4018(02)01384-6. ISSN 0030-4018.
  59. Duarte, F J; Taylor, T S; Black, A M; Davenport, W E; Varmette, P G (2011-02-03). "N-slit interferometer for secure free-space optical communications: 527 m intra interferometric path length". Journal of Optics. IOP Publishing. 13 (3): 035710. doi:10.1088/2040-8978/13/3/035710. ISSN 2040-8978.
  60. Duarte, F J; Taylor, T S; Clark, A B; Davenport, W E (2009-11-25). "TheN-slit interferometer: an extended configuration". Journal of Optics. IOP Publishing. 12 (1): 015705. doi:10.1088/2040-8978/12/1/015705. ISSN 2040-8978.
  61. G. Sheridan, Australian physicist wins Guthrie Medal, The Bulletin 101 (5239) 49-50 (1980).
  62. B. Mansfield and M. Hutchinson, Liberality of Opportunity: A history of Macquarie University 1964-1989 (Hale and Iremonger, Sydney, 1992)
  63. F. J. Duarte, Proceedings of the International Conference on Lasers '87 (STS Press, Mc Lean, VA, 1988).
  64. "Paul F. Forman Team Engineering Excellence Award". OSA.org. Retrieved Dec 13, 2016.
  65. Photonics Spectra 50 (5), 20 (2016).
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.