Commonly used gamma-emitting isotopes

Radionuclides which emit gamma radiation are valuable in a range of different industrial, scientific and medical technologies. This article lists some common gamma-emitting radionuclides of technological importance, and their properties.

Fission products

Many artificial radionuclides of technological importance are produced as fission products within nuclear reactors. A fission product is a nucleus with approximately half the mass of a uranium or plutonium nucleus which is left over after such a nucleus has been "split" in a nuclear fission reaction.

Caesium-137 is one such radionuclide. It has a half-life of 30 years, and decays by beta decay without gamma ray emission to a metastable state of barium-137 (137m
Ba
). Barium-137m has a half-life of a 2.6 minutes and is responsible for all of the gamma ray emission in this decay sequence. The ground state of barium-137 is stable.

The gamma ray (photon) energy of 137m
Ba
is about 662 keV. These gamma rays can be used, for example, in radiotherapy such as for the treatment of cancer, in food irradiation, or in industrial gauges or sensors. 137
Cs
is not widely used for industrial radiography as other nuclides, such as cobalt-60 or iridium-192, offer higher radiation output for a given volume.

Iodine-131 is another important gamma-emitting radionuclide produced as a fission product. With a short half-life of 8 days, this radioisotope is not of practical use in radioactive sources in industrial radiography or sensing. However, since iodine is a component of biological molecules such as thyroid hormones, iodine-131 is of great importance in nuclear medicine, and in medical and biological research as a radioactive tracer.

Lanthanum-140 is a decay product of barium-140, a common fission product. It is a potent gamma emitter. It was used in high quantities during the Manhattan Project for the RaLa Experiments.

Activation products

Some radionuclides, for example cobalt-60 and iridium-192, are made by the neutron irradiation of normal non-radioactive cobalt and iridium metal in a nuclear reactor, creating radioactive nuclides of these elements which contain extra neutrons, compared to the original stable nuclides.

In addition to their uses in radiography, both cobalt-60 (Co-60) and iridium-192 (Ir-192) are used in the radiotherapy of cancer. Cobalt-60 tends to be used in teletherapy units as a higher photon energy alternative to Cs-137, while iridium-192 tends to be used in a different mode of therapy, internal radiotherapy or brachytherapy. The iridium wires for brachytherapy are a palladium-coated iridium/palladium alloy wire made radioactive by neutron activation. This wire is then inserted into a tumor such as a breast tumor, and the tumor is irradiated by gamma ray photons from the wire. At the end of the treatment the wire is removed.

A rare but notable gamma source is sodium-24, this has a very short half-life but it emits photons with very high energies (>2 MeV). It could be used for radiography of thick steel objects if the radiography occurred close to the point of production. In common with Co-60 and Ir-192 it is formed by the neutron activation of the commonly found stable isotope.

Minor actinides

Americium-241 has been used as a source of low energy gamma photons, it has been used in some applications such as portable X-ray fluorescence equipment (XRF) and common household ionizing smoke detectors.

Natural radioisotopes

Many years ago radium-226 and radon-222 sources were used as gamma-ray sources for industrial radiography: for instance a radon-222 source was used to examine the mechanisms inside an unexploded V-1 flying bomb, while some of the early Bathyspheres could be examined using radium-226 to check for cracks. Because both radium and radon are very radiotoxic and very expensive due to their natural rarity, these natural radioisotopes have fallen out of use over the last half-century, replaced by artificially created radioisotopes.

Table of some useful gamma emitting isotopes

Useful Gamma emitting isotopes
Isotopeatomic masshalf lifeEmitted Gamma energy (MeV)Notes
Be-7753 d0.48
Na-22222.6 yr1.28
Na-242415 hr1.37
Mn-5454312 d0.84
Co-5757272 d0.122
Co-60605.27 yr1.25used in external beam radiotherapy
Ga-66669.4 hr1.04
Tc-99m996 hr0.14
Pd-10310317 d0.021used in brachytherapy
Ag-1121123.13 hr0.62
Sn-113113115 d0.392
Te-13213277 hr0.23
I-12512560 d0.035used in brachytherapy
I-1311318 d0.36used in brachytherapy
Xe-1331335.24 d0.08
Cs-1341342.06 yr0.61
Cs-13713730.17 yr0.662sometimes still used in radiotherapy
Ba-13313310.5 yr0.36
La-14014040.2 hr1.6
Ce-144144285 d0.13
Eu-15215213.5 yr0.122
Yb-16916932 d0.093potential brachytherapy source
Ir-19219274 d0.32used in HDR brachytherapy
Au-1981982.7 d0.41
Bi-20720731.6 yr0.57
Rn-2222223.8 d0.51
Ra-2262261600 yr0.19used for early radiotherapy (pre Cs-137 and Co-60 circa 1950's)
Th-2282281.9 yr0.24
Am-241241432 yr0.06Used in most smoke detectors
Cf-2522522.6 yr0.04
Fm-25225225 hr0.096

Note only half lives between 100 min and 5,000 yr are listed as short half-lives are usually not practical to use, and long half-lives usually mean extremely low specific activity. d= day, hr = hour, yr = year.

See also

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.