Biodiversity loss

Biodiversity loss is the extinction of species (plant or animal) worldwide, and also the local reduction or loss of species in a certain habitat.

The latter phenomenon can be temporary or permanent, depending on whether the environmental degradation that leads to the loss is reversible through ecological restoration/ecological resilience or effectively permanent (e.g. through land loss). Global extinction has so far been proven to be irreversible.

Even though permanent global species loss is a more dramatic phenomenon than regional changes in species composition, even minor changes from a healthy stable state can have dramatic influence on the food web and the food chain insofar as reductions in only one species can adversely affect the entire chain (coextinction), leading to an overall reduction in biodiversity, possible alternative stable states of an ecosystem notwithstanding. Ecological effects of biodiversity are usually counteracted by its loss. Reduced biodiversity in particular leads to reduced ecosystem services and eventually poses an immediate danger for food security, also for humankind.[1]

Loss rate

Demonstrator against biodiversity loss, at Extinction Rebellion (2018).

You know, when we first set up WWF, our objective was to save endangered species from extinction. But we have failed completely; we haven’t managed to save a single one. If only we had put all that money into condoms, we might have done some good.

Sir Peter Scott, Founder of the World Wide Fund for Nature, Cosmos Magazine, 2010[2]

The current rate of global diversity loss is estimated to be 100 to 1000 times higher than the (naturally occurring) background extinction rate and expected to still grow in the upcoming years.[3][4]

Locally bounded loss rates can be measured using species richness and its variation over time. Raw counts may not be as ecologically relevant as relative or absolute abundances. Taking into account the relative frequencies, a considerable number of biodiversity indexes has been developed. Besides richness, evenness and heterogeneity are considered to be the main dimensions along which diversity can be measured.[1]

As with all diversity measures, it is essential to accurately classify the spatial and temporal scope of the observation. "Definitions tend to become less precise as the complexity of the subject increases and the associated spatial and temporal scales widen."[5] Biodiversity itself is not a single concept but can be split up into various scales (e.g. ecosystem diversity vs. habitat diversity or even biodiversity vs. habitat diversity[5]) or different subcategories (e.g. phylogenetic diversity, species diversity, genetic diversity, nucleotide diversity). The question of net loss in confined regions is often a matter of debate but longer observation times are generally thought to be beneficial to loss estimates.[6][7]

To compare rates between different geographic regions latitudinal gradients in species diversity should also be considered.

Human-Driven Biodiversity Loss and Ecological Effects

Biodiversity is traditionally defined as the variety of life on Earth in all its forms and it comprises the number of species, their genetic variation and the interaction of these lifeforms.[8] However, from past few years the human-driven biodiversity loss are causing more severe and longer-lasting impacts.[9] Main reasons for biodiversity loss are as follows:

Change in land use (e.g. deforestation, intensive monoculture, urbanization)

According to the UN's Global Biodiversity Outlook 2014 estimates that 70 percent of the projected loss of terrestrial biodiversity are caused by agriculture use. Moreover, more than 1/3 of the planet's land surface is utilised for crops and grazing of livestock.[10] Agriculture destroys biodiversity by converting natural habitats to intensely managed systems and by releasing pollutants, including greenhouses gases. Food value chains further amplify impacts including through energy use, transport and waste.[11] The direct effects of urban growth on habitat loss are well understood:Building construction often results in habitat destruction and fragmentation. The rise of urbanization greatly reduced biodiversity when large areas of natural habitat are fragmented. Small habitat patches are unable to support the same level of genetic or taxonomic diversity as they formerly could while some of the more sensitive species may become locally extinct.[12]

Pollution

Pollution from burning fossil fuels such as oil, coal and gas can remain in the air as particle pollutants or fall to the ground as acid rain. Acid rain, which is primarily composed of sulfuric and nitric acid, causes acidification of lakes, streams and sensitive forest soils, and contributes to slower forest growth and tree damage at high elevations.[13] Moreover, Carbon dioxide released from burning fossil fuels and biomass, deforestation, and agricultural practices contributes to greenhouse gases, which prevent heat from escaping the earth’s surface. With the increase in temperature expected from increasing greenhouse gases, there will be higher levels of air pollution, greater variability in weather patterns, and changes in the distribution of vegetation in the landscape.[14] These two factors play a huge role towards biodiversity loss and entirely depended on human-driven factors.

Ecological effects on Biodiversity loss

Biodiversity loss also threatens the structure and proper functioning of the ecosystem. Although all ecosystems are able to adapt to the stresses associated with reductions in biodiversity to some degree, biodiversity loss reduces an ecosystem’s complexity, as roles once played by multiple interacting species or multiple interacting individuals are played by fewer or none.[15] The effects of species loss or changes in composition, and the mechanisms by which the effects manifest themselves, can differ among ecosystem properties, ecosystem types, and pathways of potential community change. At higher levels of extinction (41 to 60 percent of species), the effects of species loss ranked with those of many other major drivers of environmental change, such as ozone pollution, acid deposition on forests and nutrient pollution.[16] Finally, the effects are also seen on human needs such clean water, air and food production over-time. For example, studies over the last two decades have demonstrated that more biologically diverse ecosystems are more productive. As a result, there has been growing concern that the very high rates of modern extinctions – due to habitat loss, overharvesting and other human-caused environmental changes – could reduce nature’s ability to provide goods and services like food, clean water and a stable climate. [17]

Factors

DPSIR: drivers, pressures, state, impact and response model of intervention

Major factors for biotic stress and the ensuing accelerating loss rate are, amongst other threats:[18]

  1. Habitat loss and degradation
    Land use intensification (and ensuing land loss/habitat loss) has been identified to be a significant factor in loss of ecological services due to direct effects as well as biodiversity loss.[19]
  2. Climate change through heat stress and drought stress
  3. Excessive nutrient load and other forms of pollution
  4. Over-exploitation and unsustainable use (e.g. unsustainable fishing methods) we are currently using 25% more natural resources than the planet
  5. Armed conflict, which disrupts human livelihoods and institutions, contributes to habitat loss, and intensifies over-exploitation of economically valuable species, leading to population declines and local extinctions.[20]
  6. Invasive alien species that effectively compete for a niche, replacing indigenous species[21]
  7. Human activity has left the Earth struggling to sustain life, due to the demands humans have. As well as leaving around 30% of mammal, amphibian, and bird species endangered.[22]

Insect loss

In 2017, various publications describe the dramatic reduction in absolute insect biomass and number of species in Germany and North America over a period of 27 years.[23][24] As possible reasons for the decline, the authors highlight neonicotinoids and other agrochemicals. Writing in the journal PLOS One, Hallman et al. (2017) conclude that "the widespread insect biomass decline is alarming."[25]

Birds loss

Certain types of pesticides named Neonicotinoids probably contributing to decline of certain bird species.[26]

Food and agriculture

Global state and trends figures of key elements of biodiversity important to food and agriculture

In 2019, the UN's Food and Agriculture Organization produced its first report on The State of the World’s Biodiversity for Food and Agriculture, which warned that "Many key components of biodiversity for food and agriculture at genetic, species and ecosystem levels are in decline."[27][28] The report states that this is being caused by “a variety of drivers operating at a range of levels” and more specifically that “major global trends such as changes in climate, international markets and demography give rise to more immediate drivers such as land-use change, pollution and overuse of external inputs, overharvesting and the proliferation of invasive species. Interactions between drivers often exacerbate their effects on BFA [i.e. biodiversity for food and agriculture]. Demographic changes, urbanization, markets, trade and consumer preferences are reported [by the countries that provided inputs to the report] to have a strong influence on food systems, frequently with negative consequences for BFA and the ecosystem services it provides. However, such drivers are also reported to open opportunities to make food systems more sustainable, for example through the development of markets for biodiversity-friendly products.”[29] It further states that “the driver mentioned by the highest number of countries as having negative effects on regulating and supporting ecosystem services [in food and agricultural production systems] is changes in land and water use and management” and that  “loss and degradation of forest and aquatic ecosystems and, in many production systems, transition to intensive production of a reduced number of species, breeds and varieties, remain major drivers of loss of BFA and ecosystem services.”[29]

The 2019 IPBES Global Assessment Report on Biodiversity and Ecosystem Services asserts that industrial farming is a significant factor in collapsing biodiversity.[30] The health of humans is largely dependent on the product of an ecosystem. With biodiversity loss, a huge impact on human health comes as well. Biodiversity makes it possible for humans to have a sustainable level of soils and the means to have the genetic factors in order to have food.[31]

Native Species Richness Loss

Humans have altered plant richness in regional landscapes worldwide transforming more than 75% of the terrestrial biomes to the "anthropogenic biomes." This is seen through loss of native species being replaced and out competed by agriculture. Models indicate that about half of the biosphere has seen a "substantial net anthropogenic change" in species richness. [32]

Solutions

Conservation challenge are so many that are posed when dealing with biodiversity loss. Hence, a joint effort needs to be made through public policies, economic solutions, monitoring and education by governments, NGOs, conservationists etc. Incentives are required to protect species and conserve their natural habitat and disincentivize habitat loss and degradation (e.g. implementing sustainable development). Other ways to achieve this goal are enforcing laws that prevent poaching wildlife, protect species from overhunting and overfishing and keep the ecosystems they rely on intact and secure from species invasions and land use conversion. [33]

Environmental Organizations

Earth's 25 terrestrial hot spots of biodiversity. These regions contain a number of plant and animal species and have been subjected to high levels of habitat destruction by human activity.

There are many organizations devoted to the cause of prioritizing conservation efforts such as the Red List of Threatened Species from the International Union for Conservation of Nature and Natural Resources (IUCN) and the United States Endangered Species Act. Additionally, British environmental scientist Norman Myers and his colleagues have identified 25 terrestrial biodiversity hotspots that could serve as priorities for habitat protection have been identified. Many governments in the world have conserved portions of their territories under the Convention on Biological Diversity (CBD). Since 2010, approximately 164 countries have developed plans to reach their conservation targets including the protection of 17 percent of terrestrial and inland waters  and 10 percent of coastal and marine areas. By 2019, many national governments had protected 14.9 percent of land areas and 7.5 percent of the world’s oceans. [34]

See also

Sources

 This article incorporates text from a free content work. Licensed under CC BY-SA IGO 3.0 License statement: The State of the World's Biodiversity for Food and Agriculture − In Brief, FAO, FAO. To learn how to add open license text to Wikipedia articles, please see this how-to page. For information on reusing text from Wikipedia, please see the terms of use.

References

  1. Cardinale, Bradley; et al. (2012). "Biodiversity loss and its impact on humanity" (PDF). Nature. 486 (7401): 59–67. Bibcode:2012Natur.486...59C. doi:10.1038/nature11148. PMID 22678280. ...at the first Earth Summit, the vast majority of the world’s nations declared that human actions were dismantling the Earth’s ecosystems, eliminating genes, species and biological traits at an alarming rate. This observation led to the question of how such loss of biological diversity will alter the functioning of ecosystems and their ability to provide society with the goods and services needed to prosper.
  2. "A plague of people". Cosmos. 13 May 2010. Archived from the original on 6 November 2016.
  3. Ceballos, Gerardo; et al. (2015). "Accelerated modern human–induced species losses: Entering the sixth mass extinction". Science Advances. 1 (5): e1400253. Bibcode:2015SciA....1E0253C. doi:10.1126/sciadv.1400253. PMC 4640606. PMID 26601195.
  4. De Vos, Jurriaan; et al. (2015). "Estimating the normal background rate of species extinction" (PDF). Conservation Biology. 29 (2): 452–462. doi:10.1111/cobi.12380. PMID 25159086.
  5. Tagliapietra, Davide; Sigovini, Marco. "Biological diversity and habitat diversity: a matter of Science and perception". Terre et Environnement (PDF). 88. pp. 147–155. ISBN 2-940153-87-6. Archived from the original (PDF) on 2 February 2017. Retrieved 18 September 2019.
  6. Gonzalez, Andrew; Cardinale, Bradley J.; Allington, Ginger R. H.; Byrnes, Jarrett; Arthur Endsley, K.; Brown, Daniel G.; Hooper, David U.; Isbell, Forest; O'Connor, Mary I.; Loreau, Michel (2016). "Estimating local biodiversity change: a critique of papers claiming no net loss of local diversity". Ecology. 97 (8): 1949–1960. doi:10.1890/15-1759.1. PMID 27859190. S2CID 5920426. two recent data meta-analyses have found that species richness is decreasing in some locations and is increasing in others. When these trends are combined, these papers argued there has been no net change in species richness, and suggested this pattern is globally representative of biodiversity change at local scales
  7. Bradley Cardinale (2014-06-06). "Overlooked local biodiversity loss (letter and response)". Science. 344 (6188): 1098. doi:10.1126/science.344.6188.1098-a. PMID 24904146.
  8. https://www.britannica.com/science/biodiversity-loss
  9. https://www.britannica.com/science/biodiversity-loss
  10. https://www.greenfacts.org/en/biodiversity/l-3/4-causes-desertification.htm
  11. https://www.nature.com/scitable/knowledge/library/causes-and-consequences-of-biodiversity-declines-16132475/
  12. https://www.researchgate.net/publication/222543034_Genetic_diversity_and_local_population_structure_of_fragmented_populations_of_Trillium_camschatcense_Trilliaceae
  13. https://www.britannica.com/science/biodiversity-loss
  14. Backhaus, Thomas; Snape, Jason; Lazorchak, Jim (2012). "The impact of chemical pollution on biodiversity and ecosystem services: The need for an improved understanding". Integrated Environmental Assessment and Management. 8 (4): 575–576. doi:10.1002/ieam.1353. PMID 22987515.
  15. Backhaus, Thomas; Snape, Jason; Lazorchak, Jim (2012). "The impact of chemical pollution on biodiversity and ecosystem services: The need for an improved understanding". Integrated Environmental Assessment and Management. 8 (4): 575–576. doi:10.1002/ieam.1353. PMID 22987515.
  16. https://www.mcgill.ca/newsroom/channels/news/ecosystem-effects-biodiversity-loss-could-rival-impacts-climate-change-and-pollution-2
  17. https://www.environmental-awareness.com/causes-effects-solutions-for-biodiversity-loss/
  18. "Global Biodiversity Outlook 3". Convention on Biological Diversity. 2010.
  19. Allan, Eric; Manning, Pete; Alt, Fabian; Binkenstein, Julia; Blaser, Stefan; Blüthgen, Nico; Böhm, Stefan; Grassein, Fabrice; Hölzel, Norbert; Klaus, Valentin H.; Kleinebecker, Till; Morris, E. Kathryn; Oelmann, Yvonne; Prati, Daniel; Renner, Swen C.; Rillig, Matthias C.; Schaefer, Martin; Schloter, Michael; Schmitt, Barbara; Schöning, Ingo; Schrumpf, Marion; Solly, Emily; Sorkau, Elisabeth; Steckel, Juliane; Steffen-Dewenter, Ingolf; Stempfhuber, Barbara; Tschapka, Marco; Weiner, Christiane N.; Weisser, Wolfgang W.; et al. (2015). "Land use intensification alters ecosystem multifunctionality via loss of biodiversity and changes to functional composition". Ecol. Lett. 18 (8): 834–843. doi:10.1111/ele.12469. PMC 4744976. PMID 26096863.
  20. Daskin, Joshua H.; Pringle, Robert M. (2018). "Warfare and wildlife declines in Africa's protected areas". Nature. 553 (7688): 328–332. Bibcode:2018Natur.553..328D. doi:10.1038/nature25194. PMID 29320475.
  21. Walsh JR, Carpenter SR, Vander Zanden MJ (2016). "Invasive species triggers a massive loss of ecosystem services through a trophic cascade". Proc Natl Acad Sci U S A. 13 (15): 4081–5. Bibcode:2016PNAS..113.4081W. doi:10.1073/pnas.1600366113. PMC 4839401. PMID 27001838.
  22. Shah, Anup. "Loss of Biodiversity and Extinctions". Global Issues. Retrieved 3 May 2019.
  23. Dicks, Lynn V.; Viana, Blandina; Bommarco, Riccardo; Brosi, Berry; Arizmendi, María del Coro; Cunningham, Saul A.; Galetto, Leonardo; Hill, Rosemary; Lopes, Ariadna V.; Pires, Carmen; Taki, Hisatomo; Potts, Simon G. (2016-11-25). "Ten policies for pollinators" (PDF). Science. 354 (6315): 975–976. Bibcode:2016Sci...354..975D. doi:10.1126/science.aai9226. PMID 27884996.
  24. "Where have all the insects gone?". Science | AAAS. 2017-05-09. Retrieved 2017-10-20.
  25. Hallmann, Caspar A.; Sorg, Martin; Jongejans, Eelke; Siepel, Henk; Hofland, Nick; Schwan, Heinz; Stenmans, Werner; Müller, Andreas; Sumser, Hubert; Hörren, Thomas; Goulson, Dave; de Kroon, Hans (2017-10-18). Lamb, Eric Gordon (ed.). "More than 75 percent decline over 27 years in total flying insect biomass in protected areas". PLOS ONE. Public Library of Science (PLoS). 12 (10): e0185809. Bibcode:2017PLoSO..1285809H. doi:10.1371/journal.pone.0185809. PMC 5646769. PMID 29045418.
  26. Pennisi, Elizabeth. "Common pesticide makes migrating birds anorexic". Science. Retrieved 19 September 2019.
  27. Bélanger, J.; Pilling, D., eds. (2019), The State of the World's Biodiversity for Food and Agriculture, Rome: FAO Commission on Genetic Resources for Food and Agriculture
  28. McGrath, Matt (22 February 2019), UN: Growing threat to food from decline in biodiversity, BBC
  29. In brief – The State of the World's Biodiversity for Food and Agriculture (PDF). Rome: FAO. 2019. Archived from the original (PDF) on 24 September 2019.
  30. Vidal, John (March 15, 2019). "The Rapid Decline Of The Natural World Is A Crisis Even Bigger Than Climate Change". The Huffington Post. Retrieved March 16, 2019.
  31. "Biodiversity". World Health Organization. Retrieved 3 May 2019.
  32. Ellis, Erle C.; Antill, Erica C.; Kreft, Holger (January 17, 2012). "All Is Not Loss: Plant Biodiversity in the Anthropocene". PLOS ONE. 7 (1): e30535. doi:10.1371/journal.pone.0030535. PMC 3260302. PMID 22272360.
  33. "Biodiversity loss - Ecological effects". Encyclopedia Britannica. Retrieved 2020-03-23.
  34. "Biodiversity loss - Ecological effects". Encyclopedia Britannica. Retrieved 2020-03-23.

Further reading

  • Worm, B.; Barbier, E. B.; Beaumont, N.; Duffy, J. E.; Folke, C.; Halpern, B. S.; Jackson, J. B. C.; Lotze, H. K.; Micheli, F.; Palumbi, S. R.; Sala, E.; Selkoe, K. A.; Stachowicz, J. J.; Watson, R. (2006-11-03). "Impacts of Biodiversity Loss on Ocean Ecosystem Services". Science. American Association for the Advancement of Science (AAAS). 314 (5800): 787–790. Bibcode:2006Sci...314..787W. doi:10.1126/science.1132294. PMID 17082450.
  • Waldron, Anthony; Miller, Daniel C.; Redding, Dave; Mooers, Arne; Kuhn, Tyler S.; Nibbelink, Nate; Roberts, J. Timmons; Tobias, Joseph A.; Gittleman, John L. (2017-10-25). "Reductions in global biodiversity loss predicted from conservation spending" (PDF). Nature. Springer Nature. 551 (7680): 364–367. Bibcode:2017Natur.551..364W. doi:10.1038/nature24295. hdl:10044/1/52628. PMID 29072294.
  • Charles Perrings (2008). Biodiversity Loss: Economic and Ecological Issues. Cambridge University Press. ISBN 978-0521588669.
  • Neil Griffin, ed. (2015). Biodiversity Loss in the 21st Century. Ml Books International - Ips. ISBN 978-1632390943.
  • Alexander Wood (2000). The Root Causes of Biodiversity Loss. Routledge. ISBN 978-1853836992.
  • Wilson EO, Peter FM, editors. Biodiversity. Washington (DC): National Academies Press (US); 1988. Chapter 2, The Loss of Diversity Causes and Consequences. Available from: https://www.ncbi.nlm.nih.gov/books/NBK219310/
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.