Biobased economy

Biobased economy, bioeconomy or biotechonomy refers to economic activity involving the use of biotechnology in the production of (bio-based) goods, services, or energy from biological material (or biomass) as the primary resource base. An important aspect of the bioeconomy is understanding mechanisms and processes at the genetic, molecular, and genomic levels, and applying this understanding to creating or improving industrial processes, developing new products and services, and producing new energy.

The terms are widely used by regional development agencies, national and international organizations, and biotechnology companies. They are closely linked to the evolution of the biotechnology industry and the capacity to study, understand, and manipulate genetic material that has been possible due to scientific research and technological development. This includes the application of scientific and technological developments to agriculture, health, chemical, and energy industries.[1][2]

History

The term 'biotechonomy' was used by Juan Enríquez and Rodrigo Martinez at the Genomics Seminar in the 1997 AAAS meeting. An excerpt of this paper was published in Science."[3] Enríquez and Martinez' 2002 Harvard Business School working paper, "Biotechonomy 1.0: A Rough Map of Biodata Flow", showed the global flow of genetic material into and out of the three largest public genetic databases: GenBank, EMBL and DDBJ. The authors then hypothesized about the economic impact that such data flows might have on patent creation, evolution of biotech startups and licensing fees.[4] An adaptation of this paper was published in Wired magazine in 2003.[5]

The term 'bioeconomy' became popular from the mid-2000s with its adoption by the European Union and Organisation for Economic Co-operation and Development as a policy agenda and framework to promote the use of biotechnology to develop new products, markets, and uses of biomass.[6] Since then, both the EU (2012) and OECD (2006) have created dedicated bioeconomy strategies, as have an increasing number of countries around the world.[7] Often these strategies conflate the bioeconomy with the term 'bio-based economy'. For example, since 2005 the Netherlands has sought to promote the creation of a biobased economy.[8] Pilot plants have been started i.e. in Lelystad (Zeafuels), and a centralised organisation exists (Interdepartementaal programma biobased economy), with supporting research (Food & Biobased Research) being conducted.[9] Other European countries have also developed and implemented bioeconomy or bio-based economy policy strategies and frameworks.[10]

In 2012 president Barack Obama of the USA announced intentions to encourage biological manufacturing methods, with a National Bioeconomy Blueprint.[11]

In practice

The biobased economy uses first-generation biomass (crops), second-generation biomass (crop refuge), and third-generation biomass (seaweed, algae). Several methods of processing are then used (in biorefineries) to gather the most out of the biomass. This includes techniques such as

Anaerobic digestion is generally used to produce biogas, fermentation of sugars produces ethanol, pyrolysis is used to produce pyrolysis-oil (which is solidified biogas), and torrefaction is used to create biomass-coal. Biomass-coal and biogas is then burnt for energy production, ethanol can be used as a (vehicle)-fuel, as well as for other purposes, such as skincare products.[12]

Getting the most out of the biomass

For economic reasons, the processing of the biomass is done according to a specific pattern (a process called cascading). This pattern depends on the types of biomass used. The whole of finding the most suitable pattern is known as biorefining. A general list shows the products with high added value and lowest volume of biomass to the products with the lowest added value and highest volume of biomass:[13]

  • fine chemicals/medicines
  • food
  • chemicals/bioplastics
  • transport fuels
  • electricity and heat

Genetic modification

Organisms, ranging from bacteria over yeasts up to plants are used for production of enzymatic catalysis. Genetically modified bacteria have been used to produce insulin, artemisinic acid was made in engineered yeast. Some bioplastics (based on polyhydroxylbutyrate or polyhydroxylalkanoates are produced from sugar using genetically modified microbes.[14]

Genetically modified organisms are also used for the production of biofuels. Biofuels are a type of Carbon-neutral fuel.

Research is also being done towards CO2 fixation using a synthetic metabolic pathway. By genetically modifying E. coli bacteria so as to allow them to consume CO2, the bacterium may provide the infrastructure for the future renewable production of food and green fuels.[15][16]

One of the organisms (Ideonella S-sakaiensis) that is able to break down PET (a plastic) into other substances has been genetically modified to break down PET even faster and also break down PEF. Once plastics (which are normally non-biodegradable) are broken down and recycled into other substances (i.e. biomatter in the case of Tenebrio molitor larvae) it can be used as an input for other animals.

Genetically modified crops are also used. Genetically modified energy crops for instance may provide some additional advantages such as reduced associated costs (i.e. costs during the manufacturing process[17] ) and less water use. One example are trees have been genetically modified to either have less lignin, or to express lignin with chemically labile bonds.[18][19]

With genetically modified crops however, there are still some challenges involved (hurdles to regulatory approvals, market adoption and public acceptance).[20]

See also

References

  1. Smyth, S. J.; Aerni, P.; Castle, D.; Demont, M.; Falck-Zepeda, J. B.; Paarlberg, R.; Phillips, P. W. B.; Pray, C. E.; Savastano, S.; Wesseler; Zilberman, D. (2011). "Sustainability and the bioeconomy: Policy recommendations from the 15th ICABR conference". AgBioForum. 14 (3): 180–186.
  2. Wesseler; Spielman, D. S.; Demont, M. (2011). "The Future of Governance in the Global Bioeconomy: Policy, Regulation, and Investment Challenges for the Biotechnology and Bioenergy Sectors". AgBioForum. 13 (4): 288–290.
  3. Enríquez-Cabot, Juan. "Genomics and the World's Economy." Science 281 (14 August 1998): 925-926.
  4. Juan Enríquez, Rodrigo Martinez. "Biotechonomy 1.0: A Rough Map of Biodata Flow", Harvard Business School working paper # 03-028, August 2002.
  5. Rodrigo Martinez, Juan Enríquez, Jonathan West. "DNA Space. The Geography of the Genome", Wired, June 2003. p. 160.
  6. Birch, Kean (2019). Neoliberal Bio-economies? The Co-construction of Markets and Natures. London: Palgrave Macmillan. pp. 64–67. ISBN 978-3-319-91424-4.
  7. "German Bioeconomy Council".
  8. Biobased economy.nl
  9. Schematic showing the biomass and processes used in Zeafuels Archived April 26, 2012, at the Wayback Machine
  10. McCormick, Kes; Kautto, Niina (2013). "The Bioeconomy in Europe: An Overview". Sustainability. 5 (6): 2589–2608. doi:10.3390/su5062589.
  11. White House Promotes a Bioeconomy April 26, 2012
  12. ACCRES
  13. Kijk magazine, number 8, 2011
  14. Building a circular bioeconomy with synthetic biology
  15. The Greenest Diet: Bacteria Switch to Eating Carbon Dioxide
  16. Diet for the planet
  17. Smith, Rebecca A.; Cass, Cynthia L.; Mazaheri, Mona; Sekhon, Rajandeep S.; Heckwolf, Marlies; Kaeppler, Heidi; de Leon, Natalia; Mansfield, Shawn D.; Kaeppler, Shawn M.; Sedbrook, John C.; Karlen, Steven D.; Ralph, John (2 May 2017). "Suppression of CINNAMOYL-CoA REDUCTASE increases the level of monolignol ferulates incorporated into maize lignins". Biotechnology for Biofuels. 10 (1): 109. doi:10.1186/s13068-017-0793-1. PMC 5414125. PMID 28469705.
  18. Redesigned crops could produce far more fuel
  19. Plant genetic engineering for biofuel production: towards affordable cellulosic ethanol.
  20. Chapotin, SM; Wolt, JD (2007). "Genetically modified crops for the bioeconomy: meeting public and regulatory expectations". Transgenic Res. 16 (6): 675–88. doi:10.1007/s11248-007-9122-y. PMID 17701080.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.