1,3,3-Trinitroazetidine

1,3,3-Trinitroazetidine
Names
IUPAC name
1,3,3-trinitroazetidin
Other names
TNAZ
Identifiers
3D model (JSmol)
ChemSpider
Properties
C3H4N4O6
Molar mass 192.09 g/mol
Appearance pale yellow orthorhombic crystals
Density 1.84 g/cm3
Melting point 101[1] °C (214 °F; 374 K)
Boiling point 252[1] °C (486 °F; 525 K)
Hazards
Flash point unknown
unknown
Explosive data
Shock sensitivity unknown
Friction sensitivity unknown
Detonation velocity 9597 m/s[2]
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☒N (what is ☑Y☒N ?)
Infobox references

1,3,3-Trinitroazetidine (TNAZ) is a highly energetic heterocyclic compound that has been considered as a potential replacement for TNT because of its low melting point (101 °C) and good temperature stability (up to 240 ° C). TNAZ was first synthesized by Archibald et al. in 1983 in work published in 1990.[3] Several synthesis routes are known and bulk production of several hundred kilogram batches has been demonstrated at Los Alamos National Laboratory.[4][1][5]

Properties

TNAZ forms pale yellow crystals with a melting point of 101 °C. The compound crystallizes in an orthorhombic lattice with the space group Pbca. Thermolysis occurs starting around 240 °C - 250 °C with decomposition products that include nitrogen dioxide, nitric oxide, nitrous acid, carbon dioxide and formaldehyde. As far as energetic properties, it is roughly 30% more energetic than TNT and has a heat of explosion of ~6343 kJ/kg, a detonation velocity of ~9000 m/s, and a detonation pressure of 36.4 GPa.[6]

References

  1. 1 2 3 Viswanath, Dabir S.; Ghosh, Tushar K.; Boddu, Veera M. (2018). "1,3,3-Trinitroazetidine (TNAZ)". Emerging Energetic Materials: Synthesis, Physicochemical, and Detonation Properties: 293–307. doi:10.1007/978-94-024-1201-7_11. ISBN 978-94-024-1199-7. Retrieved 24 July 2018.
  2. Simpson, R.L.; Garza, R.G.; Foltz, M.F.; Ornellas, D.L.; Utriew, P.A. (14 December 1994). "Characterization of TNAZ". Office of Scientific and Technical Information (OSTI). doi:10.2172/71573.
  3. Archibald, T. G; Gilardi, Richard; Baum, K; George, Clifford (1990). "Synthesis and x-ray crystal structure of 1,3,3-trinitroazetidine". The Journal of Organic Chemistry. 55 (9): 2920–2924. doi:10.1021/jo00296a066.
  4. Coburn, Michael D.; Hiskey, Michael A.; Archibald, Thomas G. (January 1998). "Scale-up and waste-minimization of the Los Alamos process for 1,3,3-trinitroazetidine (TNAZ)". Waste Management. 17 (2–3): 143–146. doi:10.1016/S0956-053X(97)10013-7.
  5. Jalový, Zdenek; Zeman, Svatopluk; Suceska, Muhamed; Vávra, Pave; Dudek, Kamil; Rajic, Masa (1 June 2001). "1,3,3-trinitroazetidine (TNAZ). Part I. Syntheses and properties". Journal of Energetic Materials. 19 (2): 219–239. doi:10.1080/07370650108216127. ISSN 0737-0652.
  6. Axenrod, Theodore; Watnick, Clara; Yazdekhasti, Hamid; Dave, Paritosh R (1993). "Synthesis of 1,3,3-trinitroazetidine". Tetrahedron Letters. 34 (42): 6677–6680. doi:10.1016/S0040-4039(00)61673-8.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.