Takens's theorem

In the study of dynamical systems, a delay embedding theorem gives the conditions under which a chaotic dynamical system can be reconstructed from a sequence of observations of the state of a dynamical system. The reconstruction preserves the properties of the dynamical system that do not change under smooth coordinate changes (i.e., diffeomorphisms), but it does not preserve the geometric shape of structures in phase space.

Takens' theorem is the 1981 delay embedding theorem of Floris Takens. It provides the conditions under which a smooth attractor can be reconstructed from the observations made with a generic function. Later results replaced the smooth attractor with a set of arbitrary box counting dimension and the class of generic functions with other classes of functions.

Delay embedding theorems are simpler to state for discrete-time dynamical systems. The state space of the dynamical system is a ν-dimensional manifold M. The dynamics is given by a smooth map

Assume that the dynamics f has a strange attractor A with box counting dimension dA. Using ideas from Whitney's embedding theorem, A can be embedded in k-dimensional Euclidean space with

That is, there is a diffeomorphism φ that maps A into Rk such that the derivative of φ has full rank.

A delay embedding theorem uses an observation function to construct the embedding function. An observation function α must be twice-differentiable and associate a real number to any point of the attractor A. It must also be typical, so its derivative is of full rank and has no special symmetries in its components. The delay embedding theorem states that the function

is an embedding of the strange attractor A.

Simplified, slightly inaccurate version

Suppose the d-dimensional state vector xt evolves according to an unknown but continuous and (crucially) deterministic dynamic. Suppose, too, that the one-dimensional observable y is a smooth function of x, and “coupled” to all the components of x. Now at any time we can look not just at the present measurement y(t), but also at observations made at times removed from us by multiples of some lag , etc. If we use k lags, we have a k-dimensional vector. One might expect that, as the number of lags is increased, the motion in the lagged space will become more and more predictable, and perhaps in the limit would become deterministic. In fact, the dynamics of the lagged vectors become deterministic at a finite dimension; not only that, but the deterministic dynamics are completely equivalent to those of the original state space (More exactly, they are related by a smooth, invertible change of coordinates, or diffeomorphism.) The magic embedding dimension k is at most 2d + 1, and often less.[1]

References

  1. Shalizi, Cosma R. (2006). "Methods and Techniques of Complex Systems Science: An Overview". In Deisboeck, ThomasS; Kresh, J.Yasha. Complex Systems Science in Biomedicine. Springer US. pp. 33–114. ISBN 978-0-387-30241-6. Retrieved 2014-11-03.

Further reading

  • N. Packard, J. Crutchfield, D. Farmer and R. Shaw (1980). "Geometry from a time series". Physical Review Letters. 45 (9): 712&ndash, 716. Bibcode:1980PhRvL..45..712P. doi:10.1103/PhysRevLett.45.712.
  • F. Takens (1981). "Detecting strange attractors in turbulence". In D. A. Rand and L.-S. Young. Dynamical Systems and Turbulence, Lecture Notes in Mathematics, vol. 898. Springer-Verlag. pp. 366&ndash, 381.
  • R. Mañé (1981). "On the dimension of the compact invariant sets of certain nonlinear maps". In D. A. Rand and L.-S. Young. Dynamical Systems and Turbulence, Lecture Notes in Mathematics, vol. 898. Springer-Verlag. pp. 230&ndash, 242.
  • G. Sugihara and R.M. May (1990). "Nonlinear forecasting as a way of distinguishing chaos from measurement error in time series". Nature. 344 (6268): 734&ndash, 741. Bibcode:1990Natur.344..734S. doi:10.1038/344734a0. PMID 2330029.
  • Tim Sauer, James A. Yorke, and Martin Casdagli (1991). "Embedology". Journal of Statistical Physics. 65 (3–4): 579&ndash, 616. Bibcode:1991JSP....65..579S. doi:10.1007/BF01053745.
  • G. Sugihara (1994). "Nonlinear forecasting for the classification of natural time series". Phil. Trans. R. Soc. Lond. A. 348 (1688): 477&ndash, 495. Bibcode:1994RSPTA.348..477S. doi:10.1098/rsta.1994.0106.
  • P.A. Dixon, M.J. Milicich, and G. Sugihara (1999). "Episodic fluctuations in larval supply". Science. 283 (5407): 1528&ndash, 1530. Bibcode:1999Sci...283.1528D. doi:10.1126/science.283.5407.1528. PMID 10066174.
  • G. Sugihara, M. Casdagli, E. Habjan, D. Hess, P. Dixon and G. Holland (1999). "Residual delay maps unveil global patterns of atmospheric nonlinearity and produce improved local forecasts". PNAS. 96 (25): 210&ndash, 215. Bibcode:1999PNAS...9614210S. doi:10.1073/pnas.96.25.14210. PMC 24416. PMID 10588685.
  • C. Hsieh; Glaser, SM; Lucas, AJ; Sugihara, G (2005). "Distinguishing random environmental fluctuations from ecological catastrophes for the North Pacific Ocean". Nature. 435 (7040): 336&ndash, 340. Bibcode:2005Natur.435..336H. doi:10.1038/nature03553. PMID 15902256.
  • R. A. Rios, L. Parrott, H. Lange and R. F. de Mello (2015). "Estimating determinism rates to detect patterns in geospatial datasets". Remote Sensing of Environment. 156: 11&ndash, 20. Bibcode:2015RSEnv.156...11R. doi:10.1016/j.rse.2014.09.019.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.