Solvmanifold

In mathematics, a solvmanifold is a homogeneous space of a connected solvable Lie group. It may also be characterized as a quotient of a connected solvable Lie group by a closed subgroup. (Some authors also require that the Lie group be simply-connected, or that the quotient be compact.) A special class of solvmanifolds, nilmanifolds, was introduced by Malcev, who proved the first structural theorems. Properties of general solvmanifolds are similar, but somewhat more complicated.

Examples

Properties

  • A solvmanifold is diffeomorphic to the total space of a vector bundle over some compact solvmanifold. This statement was conjectured by G. Mostow and proved by L. Auslander and R. Tolimieri.
  • The fundamental group of an arbitrary solvmanifold is polycyclic.
  • A compact solvmanifold is determined up to diffeomorphism by its fundamental group.
  • Fundamental groups of compact solvmanifolds may be characterized as group extensions of free abelian groups of finite rank by finitely generated torsion-free nilpotent groups.
  • Every solvmanifold is aspherical. Among all compact homogeneous spaces, solvmanifolds may be characterized by the properties of being aspherical and having a solvable fundamental group.

Completeness

Let be a real Lie algebra. It is called a complete Lie algebra if each map

ad

in its adjoint representation is hyperbolic, i.e. has real eigenvalues. Let G be a solvable Lie group whose Lie algebra is complete. Then for any closed subgroup Γ of G, the solvmanifold G/Γ is a complete solvmanifold.

References

  • L. Auslander, An exposition of the structure of solvmanifolds I, II, Bull. Amer. Math. Soc., 79:2 (1973), pp. 227–261, 262–285
  • Cooper, Daryl; Scharlemann, Martin (1999), "The structure of a solvmanifold's Heegaard splittings", Proceedings of 6th Gökova Geometry-Topology Conference, Turkish Journal of Mathematics, 23 (1): 1–18, ISSN 1300-0098, MR 1701636, archived from the original on 2011-08-22
  • V.V. Gorbatsevich (2001) [1994], "S/s086100", in Hazewinkel, Michiel, Encyclopedia of Mathematics, Springer Science+Business Media B.V. / Kluwer Academic Publishers, ISBN 978-1-55608-010-4
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.