Solenoidal vector field

An example of a solenoidal vector field,

In vector calculus a solenoidal vector field (also known as an incompressible vector field, a divergence-free vector field, or a transverse vector field) is a vector field v with divergence zero at all points in the field:

Properties

The fundamental theorem of vector calculus states that any vector field can be expressed as the sum of an irrotational and a solenoidal field. The condition of zero divergence is satisfied whenever a vector field v has only a vector potential component, because the definition of the vector potential A as:

automatically results in the identity (as can be shown, for example, using Cartesian coordinates):

The converse also holds: for any solenoidal v there exists a vector potential A such that (Strictly speaking, this holds only subject to certain technical conditions on v, see Helmholtz decomposition.)

The divergence theorem gives the equivalent integral definition of a solenoidal field; namely that for any closed surface, the net total flux through the surface must be zero:

\oiint ,

where is the outward normal to each surface element.

Etymology

Solenoidal has its origin in the Greek word for solenoid, which is σωληνοειδές (sōlēnoeidēs) meaning pipe-shaped, from σωλην (sōlēn) or pipe. In the present context of solenoidal it means constrained as if in a pipe, so with a fixed volume.

Examples

See also

References

  • Aris, Rutherford (1989), Vectors, tensors, and the basic equations of fluid mechanics, Dover, ISBN 0-486-66110-5
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.