Skew-Hermitian matrix

In linear algebra, a square matrix with complex entries is said to be skew-Hermitian or antihermitian if its conjugate transpose is the negative of the original matrix.[1] That is, the matrix A is skew-Hermitian if it satisfies the relation

where denotes the conjugate transpose of a matrix. In component form, this means that

for all i and j, where ai,j is the i,j-th entry of A, and the overline denotes complex conjugation.

Skew-Hermitian matrices can be understood as the complex versions of real skew-symmetric matrices, or as the matrix analogue of the purely imaginary numbers.[2] The set of all skew-Hermitian n×n matrices forms the u(n) Lie algebra, which corresponds to the Lie group U(n). The concept can be generalized to include linear transformations of any complex vector space with a sesquilinear norm.

Note that the adjoint of an operator depends on the scalar product considered on the dimensional complex or real space . If denotes the scalar product on , then saying is skew-adjoint means that for all one has

Imaginary numbers can be thought of as skew-adjoint (since they are like 1-by-1 matrices), whereas real numbers correspond to self-adjoint operators.

Example

For example, the following matrix is skew-Hermitian:

Properties

  • The eigenvalues of a skew-Hermitian matrix are all purely imaginary or zero. Furthermore, skew-Hermitian matrices are normal. Hence they are diagonalizable and their eigenvectors for distinct eigenvalues must be orthogonal.[3]
  • All entries on the main diagonal of a skew-Hermitian matrix have to be pure imaginary, i.e., on the imaginary axis (the number zero is also considered purely imaginary).[4]
  • If A, B are skew-Hermitian, then is skew-Hermitian for all real scalars a and b.[5]
  • If A is skew-Hermitian, then both i A and i A are Hermitian.[5]
  • If A is skew-Hermitian, then Ak is Hermitian if k is an even integer and skew-Hermitian if k is an odd integer.
  • An arbitrary (square) matrix C can uniquely be written as the sum of a Hermitian matrix A and a skew-Hermitian matrix B:[2]

See also

Notes

References

  • Horn, Roger A.; Johnson, Charles R. (1985), Matrix Analysis, Cambridge University Press, ISBN 978-0-521-38632-6 .
  • Meyer, Carl D. (2000), Matrix Analysis and Applied Linear Algebra, SIAM, ISBN 978-0-89871-454-8 .
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.