Ramanujan graph

In spectral graph theory, a Ramanujan graph, named after Srinivasa Ramanujan, is a regular graph whose spectral gap is almost as large as possible (see extremal graph theory). Such graphs are excellent spectral expanders.

Examples of Ramanujan graphs include the clique, the biclique , and the Petersen graph. As Murty's survey paper notes, Ramanujan graphs "fuse diverse branches of pure mathematics, namely, number theory, representation theory, and algebraic geometry". As observed by Toshikazu Sunada, a regular graph is Ramanujan if and only if its Ihara zeta function satisfies an analog of the Riemann hypothesis.[1]

Definition

Let be a connected -regular graph with vertices, and let be the eigenvalues of the adjacency matrix of . Because is connected and -regular, its eigenvalues satisfy . Whenever there exists with , define

A -regular graph is a Ramanujan graph if .

A Ramanujan graph is characterized as a regular graph whose Ihara zeta function satisfies an analogue of the Riemann Hypothesis.

Extremality of Ramanujan graphs

For a fixed and large , the -regular, -vertex Ramanujan graphs nearly minimize . If is a -regular graph with diameter , a theorem due to Noga Alon[2] states

Whenever is -regular and connected on at least three vertices, , and therefore . Let be the set of all connected -regular graphs with at least vertices. Because the minimum diameter of graphs in approaches infinity for fixed and increasing , this theorem implies an earlier theorem of Alon and Boppana which states

A slightly stronger bound is

where . The outline of Friedman's proof is the following. Take . Let be the -regular tree of height and let be its adjacency matrix. We want to prove that , for some depending only on . Define a function by , where is the distance from to the root of . Choosing a close to it can be proved that . Now let and be a pair of vertices at distance and define

where is a vertex in which distance to the root is equal to the distance from to and the symmetric for . By choosing properly we get , for close to and for close to . Then by the min-max theorem .

Constructions

Constructions of Ramanujan graphs are often algebraic.

  • Lubotzky, Phillips and Sarnak[3] show how to construct an infinite family of -regular Ramanujan graphs, whenever is a prime number and . Their proof uses the Ramanujan conjecture, which led to the name of Ramanujan graphs. Besides being Ramanujan graphs, their construction satisfies some other properties, for example, their girth is where is the number of nodes.
  • Morgenstern[4] extended the construction of Lubotzky, Phillips and Sarnak. His extended construction holds whenever is a prime power.
  • Arnold Pizer proved that the supersingular isogeny graphs are Ramanujan, although they tend to have lower girth than the graphs of Lubotzky, Phillips, and Sarnak.[5] Like the graphs of Lubotzky, Phillips, and Sarnak, the degrees of these graphs are always a prime number plus one. These graphs have been proposed as the basis for post-quantum elliptic-curve cryptography.[6]
  • Adam Marcus, Daniel Spielman and Nikhil Srivastava[7] proved the existence of -regular bipartite Ramanujan graphs for any . Later[8] they proved that there exist bipartite Ramanujan graphs of every degree and every number of vertices. Michael B. Cohen[9] showed how to construct these graphs in polynomial time.

References

  1. Terras, Audrey (2011), Zeta functions of graphs: A stroll through the garden, Cambridge Studies in Advanced Mathematics, 128, Cambridge University Press, ISBN 978-0-521-11367-0, MR 2768284
  2. Nilli, A. (1991), "On the second eigenvalue of a graph", Discrete Mathematics, 91 (2): 207–210, doi:10.1016/0012-365X(91)90112-F, MR 1124768 .
  3. Alexander Lubotzky; Ralph Phillips; Peter Sarnak (1988). "Ramanujan graphs". Combinatorica. 8 (3): 261–277. doi:10.1007/BF02126799.
  4. Moshe Morgenstern (1994). "Existence and Explicit Constructions of q+1 Regular Ramanujan Graphs for Every Prime Power q". Journal of Combinatorial Theory, Series B. 62: 44–62. doi:10.1006/jctb.1994.1054.
  5. Pizer, Arnold K. (1990), "Ramanujan graphs and Hecke operators", Bulletin of the American Mathematical Society, New Series, 23 (1): 127–137, doi:10.1090/S0273-0979-1990-15918-X, MR 1027904
  6. Eisenträger, Kirsten; Hallgren, Sean; Lauter, Kristin; Morrison, Travis; Petit, Christophe (2018), "Supersingular isogeny graphs and endomorphism rings: Reductions and solutions" (PDF), in Nielsen, Jesper Buus; Rijmen, Vincent, Advances in Cryptology – EUROCRYPT 2018: 37th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Tel Aviv, Israel, April 29 - May 3, 2018, Proceedings, Part III, Lecture Notes in Computer Science, 10822, Cham: Springer, pp. 329–368, doi:10.1007/978-3-319-78372-7_11, MR 3794837
  7. Adam Marcus; Daniel Spielman; Nikhil Srivastava (2013). Interlacing families I: Bipartite Ramanujan graphs of all degrees. Foundations of Computer Science (FOCS), 2013 IEEE 54th Annual Symposium.
  8. Adam Marcus; Daniel Spielman; Nikhil Srivastava (2015). Interlacing families IV: Bipartite Ramanujan graphs of all sizes. Foundations of Computer Science (FOCS), 2015 IEEE 56th Annual Symposium.
  9. Michael B. Cohen (2016). Ramanujan Graphs in Polynomial Time. Foundations of Computer Science (FOCS), 2016 IEEE 57th Annual Symposium. arXiv:1604.03544. doi:10.1109/FOCS.2016.37.
  • Guiliana Davidoff; Peter Sarnak; Alain Valette (2003). Elementary number theory, group theory and Ramanjuan graphs. LMS student texts. 55. Cambridge University Press. ISBN 0-521-53143-8. OCLC 50253269.
  • T. Sunada (1985). "L-functions in geometry and some applications". Lecture Notes in Math. Lecture Notes in Mathematics. 1201: 266–284. doi:10.1007/BFb0075662. ISBN 978-3-540-16770-9.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.