Pleochroism

Pleochroism of cordierite shown by rotating a polarizing filter on the lens of the camera
Pleochroism of tourmaline shown by rotating a polarizing filter on the lens of the camera

Pleochroism (from Greek πλέων, pléōn, "more" and χρῶμα, khrôma, "color") is an optical phenomenon in which a substance has different colors when observed at different angles, especially with polarized light.[1]

Background

Anisotropic crystals will have optical properties that vary with the direction of light. The direction of the electric field determines the polarization of light, and crystals will respond in different ways if this angle is changed. These kinds of crystals have one or two optical axes. If absorption of light varies with the angle relative to the optical axis in a crystal then pleochroism results.[2]

Anisotropic crystals have double refraction of light where light of different polarizations is bent different amounts by the crystal, and therefore follows different paths through the crystal. The components of a divided light beam follow different paths within the mineral and travel at different speeds. When the mineral is observed at some angle, light following some combination of paths and polarizations will be present, each of which will have had light of different colors absorbed. At another angle, the light passing through the crystal will be composed of another combination of light paths and polarizations, each with their own color. The light passing through the mineral will therefore have different colors when it is viewed from different angles, making the stone seem to be of different colors.

Tetragonal, trigonal, and hexagonal minerals can only show two colors and are called dichroic. Orthorhombic, monoclinic, and triclinic crystals can show three and are trichroic. For example, hypersthene, which has two optical axes, can have a red, yellow, or blue appearance when oriented in three different ways in three-dimensional space.[3] Isometric minerals cannot exhibit pleochroism.[1][4] Tourmaline is notable for exhibiting strong pleochroism. Gems are sometimes cut and set either to display pleochroism or to hide it, depending on the colors and their attractiveness.

The pleochroic colors are at their maximum when light is polarized parallel with a crystallographic axis. The axes are designated X, Y, and Z. These axes can be determined from the appearance of a crystal in a conoscopic interference pattern. Where there are two optical axes, the acute bisection of the axes gives Z for positive minerals and X for negative minerals and the obtuse bisection give the alternative axis (X or Z). Perpendicular to these is the Y axis. The color is measured with the polarization parallel to each direction. An absorption formula records the amount of absorption parallel to each axis in the form of X < Y < Z with the left most having the least absorption and the rightmost the most.[5]

In mineralogy and gemology

Pleochroism is an extremely useful tool in mineralogy and gemology for mineral and gem identification, since the number of colors visible from different angles can identify the possible crystalline structure of a gemstone or mineral and therefore help to classify it. Minerals that are otherwise very similar often have very different pleochroic color schemes. In such cases, a thin section of the mineral is used and examined under polarized transmitted light with a petrographic microscope. Another device using this property to identify minerals is the dichroscope.[6]

List of pleochroic minerals

Purple and violet

Blue

  • Aquamarine (medium): clear / light blue, or light blue / dark blue
  • Alexandrite (strong): dark red-purple / orange / green
  • Apatite (strong): blue-yellow / blue-colorless
  • Benitoite (strong): colorless / dark blue
  • Cordierite (aka Iolite) (orthorhombic; very strong): pale yellow / violet / pale blue
  • Corundum (strong): dark violet-blue / light blue-green
  • Tanzanite See Zoisite
  • Topaz (very low): colorless / pale blue / pink
  • Tourmaline (strong): dark blue / light blue
  • Zoisite (strong): blue / red-purple / yellow-green
  • Zircon (strong): blue / clear / gray

Green

  • Alexandrite (strong): dark red / orange / green
  • Andalusite (strong): brown-green / dark red
  • Corundum (strong): green / yellow-green
  • Emerald (strong): green / blue-green
  • Peridot (low): yellow-green / green / colorless
  • Titanite (medium): brown-green / blue-green
  • Tourmaline (strong): blue-green / brown-green / yellow-green
  • Zircon (low): greenish brown / green
  • Kornerupine (strong): green / pale yellowish-brown / reddish-brown
  • Hiddenite (strong): blue-green / emerald-green / yellow-green

Yellow

  • Citrine (very weak): different shades of pale yellow
  • Chrysoberyl (very weak): red-yellow / yellow-green / green
  • Corundum (weak): yellow / pale yellow
  • Danburite (weak): very pale yellow / pale yellow
  • Orthoclase (weak): different shades of pale yellow
  • Phenacite (medium): colorless / yellow-orange
  • Spodumene (medium): different shades of pale yellow
  • Topaz (medium): tan / yellow / yellow-orange
  • Tourmaline (medium): pale yellow / dark yellow
  • Zircon (weak): tan / yellow
  • Hornblende (strong): light green / dark green / yellow / brown

Brown and orange

  • Corundum (strong): yellow-brown / orange
  • Topaz (medium): brown-yellow / dull brown-yellow
  • Tourmaline (very low): dark brown / light brown
  • Zircon (very weak): brown-red / brown-yellow
  • Biotite (medium): brown

Red and pink

See also

References

  1. 1 2 "Webmineral: Pleochroism in minerals". .
  2. Bloss, F. Donald (1961). An Introduction to the Methods of Optical Crystallography. New York: Holt, Rinehart and Winston. pp. 147–149.
  3. Bloss, F. Donald (1961). An Introduction to the Methods of Optical Crystallography. New York: Holt, Rinehart and Winston. pp. 212–213.
  4. "The Pleochroic Minerals".
  5. Rogers, Austin F.; Kerr, Paul F. (1942). Optical Mineralogy (2 ed.). McGraw Hill Book Company. pp. 113–114.
  6. What is gemstone pleochroism? International Gem Society, retrieved 28-Feb-2015
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.