Modern physics

Classical physics is usually concerned with everyday conditions: speeds much lower than the speed of light, and sizes much greater than that of atoms. Modern physics is usually concerned with high velocities and small distances.

Modern physics is the post-Newtonian conception of physics. It implies that classical descriptions of phenomena are lacking, and that an accurate, "modern", description of nature requires theories to incorporate elements of quantum mechanics or Einsteinian relativity, or both. In general, the term is used to refer to any branch of physics either developed in the early 20th century and onwards, or branches greatly influenced by early 20th century physics.

Small velocities and large distances is usually the realm of classical physics. Modern physics, however, often involves extreme conditions: quantum effects typically involve distances comparable to atoms (roughly 10−9 m), while relativistic effects typically involve velocities comparable to the speed of light (roughly 3 108 m/s). In general, quantum and relativistic effects exist across all scales, although these effects can be very small in everyday life.

Overview

In a literal sense, the term modern physics, means up-to-date physics. In this sense, a significant portion of so-called classical physics is modern. However, since roughly 1890, new discoveries have caused significant paradigm shifts: the advent of quantum mechanics (QM) and of Einsteinian relativity (ER). Physics that incorporates elements of either QM or ER (or both) is said to be modern physics. It is in this latter sense that the term is generally used.

Modern physics is often encountered when dealing with extreme conditions. Quantum mechanical effects tend to appear when dealing with "lows" (low temperatures, small distances), while relativistic effects tend to appear when dealing with "highs" (high velocities, large distances), the "middles" being classical behaviour. For example, when analysing the behaviour of a gas at room temperature, most phenomena will involve the (classical) Maxwell–Boltzmann distribution. However near absolute zero, the Maxwell–Boltzmann distribution fails to account for the observed behaviour of the gas, and the (modern) Fermi–Dirac or Bose–Einstein distributions have to be used instead.

Very often, it is possible to find – or "retrieve" – the classical behaviour from the modern description by analysing the modern description at low speeds and large distances (by taking a limit, or by making an approximation). When doing so, the result is called the classical limit.

Classical physics (Rayleigh–Jeans law, black line) failed to explain black body radiation – the so-called ultraviolet catastrophe. The quantum description (Planck's law, colored lines) is said to be modern physics.

Hallmarks

These are generally considered to be the topics regarded as the "core" of the foundation of modern physics:

See also

References

  1. F. K. Richtmyer; E. H. Kennard; T. Lauristen (1955). Introduction to Modern Physics (5th ed.). New York: McGraw-Hill. p. 1. LCCN 55006862.

Further reading

  • A. Beiser (2003). Concepts of Modern Physics (6th ed.). McGraw-Hill. ISBN 978-0-07-123460-3.
  • P. Tipler, R. Llewellyn (2002). Modern Physics (4th ed.). W. H. Freeman. ISBN 978-0-7167-4345-3.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.